Turn off MathJax
Article Contents
ZHAO Tian-yuan, DONG Deng-feng, ZHOU Wei-hu, WANG Guo-ming. Micro LED Visible Light and Photoluminescence Image Sub-pixel Fast Registration[J]. Chinese Optics. doi: 10.37188/CO.2025-0142
Citation: ZHAO Tian-yuan, DONG Deng-feng, ZHOU Wei-hu, WANG Guo-ming. Micro LED Visible Light and Photoluminescence Image Sub-pixel Fast Registration[J]. Chinese Optics. doi: 10.37188/CO.2025-0142

Micro LED Visible Light and Photoluminescence Image Sub-pixel Fast Registration

cstr: 32171.14.CO.2025-0142
Funds:  Supported by National Key R & D Program of China (No. 2023YFF0719702)
More Information
  • To address the challenge of achieving high-precision registration between visible light (RGB) and photoluminescence (PL) images in Micro LED defect inspection, which arises from substantial modality differences, this study introduces a robust multimodal image registration approach capable of attaining sub-pixel accuracy, aiming to establish a direct mapping between the physical structure and electrical characteristics of the chips. We propose a registration method that integrates structural feature constraints with bidirectional residual optimization. First, leveraging the geometric regularity of Micro LED arrays, a tailored feature detection strategy is employed: electrode centers in RGB images are accurately extracted via ellipse fitting and Density-Based Spatial Clustering of Applications with Noise (DBSCAN), while chip centers in PL images are localized using an enhanced watershed algorithm with sub-pixel refinement. Second, during the registration optimization stage, a bidirectional residual constraint framework is constructed, incorporating a confidence weighting mechanism derived from residual distribution analysis. The optimal affine transformation parameters are then estimated using an iterative reweighted least squares method. Experimental results demonstrate that the proposed method achieves sub-pixel-level accuracy, with a mean absolute error (MAE) of 0.823 pixels, representing a 94.2% reduction compared to baseline methods. The root mean square error (RMSE) is 0.996 pixels, the maximum error remains below 2.839 pixels, and the inlier rate attains 75.0%. Each registration process takes only 0.036 seconds on average, achieving an order-of-magnitude improvement in computational efficiency over traditional mutual information (MI) methods. By effectively mitigating feature mismatch and outlier interference in multimodal images, the proposed method outperforms conventional approaches in terms of registration accuracy, robustness, and efficiency, thereby providing a reliable technical foundation for precise defect detection and multimodal analysis of Micro LED chips.

     

  • loading
  • [1]
    VELESACA H O, BASTIDAS G, ROUHANI M, et al. Multimodal image registration techniques: a comprehensive survey[J]. Multimedia Tools and Applications, 2024, 83(23): 63919-63947. doi: 10.1007/s11042-023-17991-2
    [2]
    林坚普, 王廷雨, 蔡苾芃, 等. 改进相位相关与聚类思想的Micro-LED芯片显微图像拼接[J]. 光学 精密工程, 2025, 33(4): 641-652. doi: 10.37188/OPE.20253304.0641

    LIN J P, WANG T Y, CAI B P, et al. Improved phase correlation and clustering ideas for Micro-LED chip microscopic image stitching[J]. Optics and Precision Engineering, 2025, 33(4): 641-652. (in Chinese). doi: 10.37188/OPE.20253304.0641
    [3]
    ZHAO G B, SU Y H, ZHU L H, et al. Micro-LED optical properties distribution research based on AOTF hyperspectral imager using empirical cumulative function[J]. Optics and Lasers in Engineering, 2024, 181: 108425. doi: 10.1016/j.optlaseng.2024.108425
    [4]
    谢军, 张威, 谢子敬, 等. 蜂巢表面AlGaInP基倒装Micro-LED的光电性能[J]. 发光学报, 2025, 46(10): 1953-1960.

    XIE J, ZHANG W, XIE Z J, et al. Photoelectric performance of AlGaInP-based flip-chip Micro-LEDs with honeycomb surface texture[J]. Chinese Journal of Luminescence, 2025, 46(10): 1953-1960. (in Chinese).
    [5]
    王伟, 张腾飞, 王绶玙. GaN基Micro-LED反向漏电流失效机理分析[J]. 发光学报, 2024, 45(9): 1539-1546. doi: 10.37188/CJL.20240164

    WANG W, ZHANG T F, WANG SH Y. Analysis of failure mechanism of reverse leakage current in GaN-based Micro-LEDs[J]. Chinese Journal of Luminescence, 2024, 45(9): 1539-1546. (in Chinese). doi: 10.37188/CJL.20240164
    [6]
    ZHU J K, ZHENG B Y, XIONG B, et al. SynMSE: a multimodal similarity evaluator for complex distribution discrepancy in unsupervised deformable multimodal medical image registration[J]. Medical Image Analysis, 2025, 103: 103620. doi: 10.1016/j.media.2025.103620
    [7]
    ZHOU ZH Y, WANG SH K, HU J S, et al. Unsupervised registration for liver CT-MR images based on the multiscale integrated spatial-weight module and dual similarity guidance[J]. Computerized Medical Imaging and Graphics, 2023, 108: 102260. doi: 10.1016/j.compmedimag.2023.102260
    [8]
    WU J, CUI ZH M, SHENG V S, et al. A comparative study of SIFT and its variants[J]. Measurement Science Review, 2013, 13(3): 122-131. doi: 10.2478/msr-2013-0021
    [9]
    贾一鑫, 邓魏永, 殷强, 等. 基于改进SURF的增强现实图像匹配方法[J]. 计算机技术与发展, 2024, 34(1): 59-64.

    JIA Y X, DENG W Y, YIN Q, et al. Augmented reality image matching method based on improved SURF[J]. Computer Technology and Development, 2024, 34(1): 59-64. (in Chinese).
    [10]
    BANSAL M, KUMAR M, KUMAR M. 2D object recognition: a comparative analysis of SIFT, SURF and ORB feature descriptors[J]. Multimedia Tools and Applications, 2021, 80(12): 18839-18857. doi: 10.1007/s11042-021-10646-0
    [11]
    ZHU B, ZHOU L, PU S M, et al. Advances and challenges in multimodal remote sensing image registration[J]. IEEE Journal on Miniaturization for Air and Space Systems, 2023, 4(2): 165-174. doi: 10.1109/JMASS.2023.3244848
    [12]
    李茂月, 许圣博, 孟令强, 等. 基于逐点前进法的改进型点云配准方法[J]. 中国光学(中英文), 2024, 17(4): 875-885.

    LI M Y, XU SH B, MENG L Q, et al. An improved point cloud registration method based on the point-by-point forward method[J]. Chinese Optics, 2024, 17(4): 875-885. (in Chinese).
    [13]
    VELESACA H O, BASTIDAS G, ROUHANI M, et al. Multimodal image registration techniques: a comprehensive survey[J]. Multimedia Tools and Applications, 2024, 83(23): 63919-63947. (查阅网上资料, 本条文献与第1条文献重复, 请确认).
    [14]
    BHARATI S, MONDAL M R H, PODDER P, et al. Deep learning for medical image registration: a comprehensive review[J]. arXiv preprint arXiv: 2204.11341, 2022. (查阅网上资料, 请作者核对文献类型及格式是否正确).
    [15]
    PAN ZH T, WEN ZH W. Analysis of image registration algorithm RANSAC and its improved algorithm[J]. IOP Conference Series: Earth and Environmental Science, 2021, 783(1): 012138. doi: 10.1088/1755-1315/783/1/012138
    [16]
    余四豪, 盖绍彦, 达飞鹏. 面向点云配准的RANSAC假设评估度量方法研究[J]. 中国光学(中英文), 2025, 18(3): 487-498.

    YU S H, GAI SH Y, DA F P. Improved RANSAC hypothesis evaluation metrics for point cloud registration[J]. Chinese Optics, 2025, 18(3): 487-498. (in Chinese).
    [17]
    DENG W Y, DONG ZH, ZHANG J Y, et al. Binocular vision system integrated with transcranial magnetic stimulation automatic therapeutic apparatus[M]//DUAN B Y, UMEDA K, HWANG W. Proceedings of the Seventh Asia International Symposium on Mechatronics: Volume I. Singapore: Springer, 2020: 424-433.
    [18]
    刘聪, 董文飞, 蒋克明, 等. 基于改进分水岭分割算法的致密荧光微滴识别[J]. 中国光学, 2019, 12(4): 783-790. doi: 10.3788/CO.20191204.0783

    LIU C, DONG W F, JIANG K M, et al. Recognition of dense fluorescent droplets using an improved watershed segmentation algorithm[J]. Chinese Optics, 2019, 12(4): 783-790. (in Chinese). doi: 10.3788/CO.20191204.0783
    [19]
    ZHANG D SH, HOU W H, GUO J, et al. Efficient subpixel image registration algorithm for high precision visual vibrometry[J]. Measurement, 2021, 173: 108538. doi: 10.1016/j.measurement.2020.108538
    [20]
    张正祺, 陈玉翀, 达飞鹏, 等. 基于双向条纹点云匹配的复杂纹理误差校正[J]. 中国光学(中英文), 2025, 18(5): 1086-1096. doi: 10.37188/CO.2025-0040

    ZHANG ZH Q, CHEN Y CH, DA F P, et al. Error correction of complex texture objects based on bidirectional fringe projection point cloud matching[J]. Chinese Optics, 2025, 18(5): 1086-1096. (in Chinese). doi: 10.37188/CO.2025-0040
    [21]
    SINDAGI V A, YASARLA R, PATEL V M. Pushing the frontiers of unconstrained crowd counting: new dataset and benchmark method[C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, IEEE, 2019: 1221-1231.
    [22]
    REZA A M. Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement[J]. Journal of VLSI Signal Processing Systems for Signal, Image and Video Technology, 2004, 38(1): 35-44. doi: 10.1023/B:VLSI.0000028532.53893.82
    [23]
    DONG Y T, WANG ZH W, GUO W Y. Overview of edge detection algorithms based on mathematical morphology[C]. 2022 IEEE 6th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), IEEE, 2022: 1321-1326.
    [24]
    HOU W F, LI D W, XU CH, et al. An advanced k nearest neighbor classification algorithm based on KD-tree[C]. 2018 IEEE International Conference of Safety Produce Informatization (IICSPI), IEEE, 2018: 902-905.
    [25]
    钟国舜, 刘秋佐, 李萌, 等. 动态扫描场景下GM-APD激光雷达点云高精度配准方法研究[J]. 中国光学(中英文), 2025, 18(5): 1076-1085.

    ZHONG G SH, LIU Q Z, LI M, et al. High-precision registration methods for GM-APD LiDAR point clouds in dynamic scanning scenarios[J]. Chinese Optics, 2025, 18(5): 1076-1085. (in Chinese).
    [26]
    DEISENROTH M P, TURNER R D, HUBER M F, et al. Robust filtering and smoothing with Gaussian processes[J]. IEEE Transactions on Automatic Control, 2012, 57(7): 1865-1871. doi: 10.1109/TAC.2011.2179426
    [27]
    LAW J. Robust statistics—the approach based on influence functions[J]. Journal of the Royal Statistical Society Series D: the Statistician, 1986, 35(5): 565-566. doi: 10.1016/s0169-7161(97)15005-2
    [28]
    BANERJEE A, DAS N, SANTOSH K C. Weber local descriptor for image analysis and recognition: a survey[J]. The Visual Computer, 2022, 38(1): 321-343. doi: 10.1007/s00371-020-02017-x
    [29]
    MAES F, COLLIGNON A, VANDERMEULEN D, et al. Multimodality image registration by maximization of mutual information[J]. IEEE Transactions on Medical Imaging, 1997, 16(2): 187-198. doi: 10.1109/42.563664
    [30]
    FOROOSH H, ZERUBIA J B, BERTHOD M. Extension of phase correlation to subpixel registration[J]. IEEE Transactions on Image Processing, 2002, 11(3): 188-200. doi: 10.1109/83.988953
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(4)

    Article views(7) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return