| Citation: | SU Bohao, LIU Jianli, WANG Wei, BAYANHESHIG. Design of a paraboloid-prism echelle spectrometer[J]. Chinese Optics. doi: 10.37188/CO.2025-0140 |
Aiming at the technical challenge that high resolution and miniaturization are difficult to be reconciled in traditional echelle spectrometers, this paper presents a novel optical design for a compact echelle spectrometer.
First, based on the crossed Czerny-Turner structure, the design adopts a transmission prism as the cross-dispersing element to separate spectra of different orders and a reverse off-axis parabolic focusing mirror mainly for eliminating the aberrations introduced by the prism, thereby realizing the miniaturization of the spatial layout. In this paper, we briefly describe the design methods of echelle gratings and dispersive prisms. Additionally, the aberration characteristics of the focusing optical path is analyzed through the theory of optical path aberration.
The simulation results show that the parabolic-prism type echelle spectrometer has a spectral range of 450~650 nm, a numerical aperture of 0.05, and a resolution up to 0.06 nm. Moreover, under the condition of reasonable tolerance range, the system volume is only 80 mm × 44 mm × 18 mm.
It can satisfy the application requirements of portable and high-precision spectral detection.
| [1] |
YAN C S, CHEN Y W, YANG H M, et al. Optical spectrum analyzers and typical applications in astronomy and remote sensing[J]. Review of Scientific Instruments, 2023, 94(8): 081501. doi: 10.1063/5.0138963
|
| [2] |
ZHU CH X, FU X P, ZHANG J Y, et al. Review of portable near infrared spectrometers: current status and new techniques[J]. Journal of Near Infrared Spectroscopy, 2022, 30(2): 51-66. doi: 10.1177/09670335211030617
|
| [3] |
YAN H, DE GEA NEVES M, NODA I, et al. Handheld near-infrared spectroscopy: state-of-the-art instrumentation and applications in material identification, food authentication, and environmental investigations[J]. Chemosensors, 2023, 11(5): 272. doi: 10.3390/chemosensors11050272
|
| [4] |
曹海霞, 赵英飞, 何淼, 等. 小型分段式高分辨率中阶梯光栅光谱仪的设计[J]. 光学学报, 2018, 38(11): 1105002. doi: 10.3788/AOS201838.1105002
CAO H X, ZHAO Y F, HE M, et al. Design of small-size high resolution echelle grating spectrometer with divided spectral coverage[J]. Acta Optica Sinica, 2018, 38(11): 1105002. (in Chinese). doi: 10.3788/AOS201838.1105002
|
| [5] |
BARNARD T W, CROCKETT M I, IVALDI J C, et al. Design and evaluation of an echelle grating optical system for ICP-OES[J]. Analytical Chemistry, 1993, 65(9): 1225-1230. doi: 10.1021/ac00057a020
|
| [6] |
UNNIKRISHNAN V K, ALTI K, NAYAK R, et al. Optimized LIBS setup with echelle spectrograph-ICCD system for multi-elemental analysis[J]. Journal of Instrumentation, 2010, 5(4): P04005.
|
| [7] |
ZHANG R, REN W Y, WANG H, et al. Raman spectroscopic detection using a two-dimensional echelle spectrometer[J]. Optoelectronics Letters, 2021, 17(11): 641-645. doi: 10.1007/s11801-021-1065-7
|
| [8] |
XIN Y, ZHANG Q, SONG W W, et al. Application of high time-resolution echelle spectrometer in transient spectral testing of energetic materials[J]. Proceedings of SPIE, 2025, 13544: 135440K. doi: 10.1117/12.3058129
|
| [9] |
ACEITUNO J, SÁNCHEZ S F, GRUPP F, et al. CAFE: Calar alto fiber-fed echelle spectrograph[J]. Astronomy & Astrophysics, 2013, 552(1): A31. doi: 10.1051/0004-6361/201220361
|
| [10] |
ZHOU Y D, YIN L, SUN Y A, et al. A uniform dispersion design method for echelle spectrometer[J]. Optics Communications, 2025, 582: 131657. (查阅网上资料, 未能确认标绿作者信息, 请确认).
|
| [11] |
FU X, DUAN F J, JIANG J J, et al. Optical design of a broadband spectrometer with compact structure based on echelle and concave gratings[J]. Optics and Lasers in Engineering, 2022, 151: 106926. doi: 10.1016/j.optlaseng.2021.106926
|
| [12] |
KRAUS M, HÖNLE T, FÖRSTER E, et al. Compact double-pass echelle spectrometer employing a crossed diffraction grating[J]. Optics Express, 2022, 30(17): 31336-31353. doi: 10.1364/OE.465208
|
| [13] |
THOMAE D, HÖNLE T, KRAUS M, et al. Compact echelle spectrometer employing a cross-grating[J]. Applied Optics, 2018, 57(25): 7109-7116. doi: 10.1364/AO.57.007109
|
| [14] |
BAGUSAT V, KRAUS M, FÖRSTER E, et al. Concept and optical design of a compact cross-grating spectrometer[J]. Journal of the Optical Society of America A, 2019, 36(3): 345-352. doi: 10.1364/JOSAA.36.000345
|
| [15] |
陈少杰. 宽波段叶阶梯光栅光谱仪设计与标定方法研究[D]. 长春: 中国科学院研究生院(长春光学精密机械与物理研究所), 2013.
CHEN SH J. Method for wide spectral coverage echelle spectrograph design and clibration[D]. Changchun: University of Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics and Physics), 2013. (in Chinese).
|
| [16] |
SCHROEDER D J. Astronomical Optics[M]. New York: Academic Press, 2000.
|
| [17] |
CHEN T A, TANG Y, ZHANG L J, et al. Correction of astigmatism and coma using analytic theory of aberrations in imaging spectrometer based on concentric off-axis dual reflector system[J]. Applied Optics, 2014, 53(4): 565-576. doi: 10.1364/AO.53.000565
|
| [18] |
HOWARD J W. Formulas for the coma and astigmatism of wedge prisms used in converging light[J]. Applied Optics, 1985, 24(23): 4265-4268. doi: 10.1364/AO.24.004265
|
| [19] |
CHANG S, PRATA A. Geometrical theory of aberrations near the axis in classical off-axis reflecting telescopes[J]. Journal of the Optical Society of America A, 2005, 22(11): 2454-2464. doi: 10.1364/JOSAA.22.002454
|
| [20] |
EVERSBERG T, VOLLMANN K. Fundamentals of echelle spectroscopy[M]//EVERSBERG T, VOLLMANN K. Spectroscopic Instrumentation. Berlin, Heidelberg: Springer, 2014: 193-227.
|