| Citation: | LIN Bai-zhu, YE Ming. Development of a Low-Temperature, High-Performance Coating Process for Heat-Sensitive Substrates[J]. Chinese Optics. doi: 10.37188/CO.2025-0139 |
To address the challenge of temperature rise control during the coating process for thermally sensitive substrates (e.g., epoxy adhesive-bonded structural components), this paper proposes a low-temperature electron beam evaporation coating process. Through a dynamic thermal management strategy featuring segmented deposition-cooling cycles, the performance of this process in terms of the core properties (i.e., stress, adhesion, and optical performance) of metallic reflective films-with silver films as the research subject-was systematically investigated, and the deposition process was optimized by integrating the thermal failure threshold of the epoxy adhesive. Experimental results demonstrate that under strictly controlled substrate temperature conditions, this process not only significantly reduces the residual stress of the reflective film, but also ensures that the interfacial adhesion meets the strictest Class 03 severity level specified in the national standard (GB/T 26332.4-2015/ISO 9211-4:2012), the average reflectivity in the visible wavelength range is comparable to that of the traditional continuous coating process (>99%@450−900 nm), and the substrate temperature rise remains consistently below the critical threshold of the epoxy adhesive. Through the synergistic effect of Ion-Assisted Deposition (IAD) and dielectric encapsulation, the oxidation resistance and environmental durability of the silver film are significantly improved, satisfying the long-term service requirements of aerospace optical devices under extreme multi-physics field coupled environments. Further theoretical analysis reveals that the thermal relaxation mechanisms and structural regulation principles of this process exhibit cross-scenario applicability, providing an innovative solution for high-performance coating of low-temperature-sensitive substrates that balances aerospace reliability and industrial universality.
| [1] |
CÔTÉ P, DESNOYERS N. Thermal stress failure criteria for a structural epoxy[J]. Proceedings of the SPIE, 2011, 8125: 81250K. doi: 10.1117/12.893832
|
| [2] |
https://multimedia.3m.com/mws/media/594118O/3m-scotch-weld-epoxy-adhesive-ec-2216-b-a.pdf?&fn=EC-2216BA.pdf..
|
| [3] |
沈凯. 低温冷光学反射镜的支撑技术研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2021.
SHEN K. Research on support technology of cryogenic optical mirror[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2021. (in Chinese).
|
| [4] |
李晓雪, 黄玲程, 郝永芹. 离子束辅助电子束蒸镀H4膜工艺及其抗激光损伤特性研究[J]. 激光与光电子学进展, 2022, 59(19): 1931001. doi: 10.3788/LOP202259.1931001
LI X X, HUANG L CH, HAO Y Q. Preparing H4 films and their laser damage resistance deposited using ion-beam-assisted electron beam evaporation[J]. Laser & Optoelectronics Progress, 2022, 59(19): 1931001. (in Chinese). doi: 10.3788/LOP202259.1931001
|
| [5] |
王英剑, 李庆国, 范正修. 电子束、离子辅助和离子束溅射三种工艺对光学薄膜性能的影响[J]. 强激光与粒子束, 2003, 15(9): 841-844.
WANG Y J, LI Q G, FAN ZH X. Property comparison of optical thin films prepared by E-beam, ion assisted deposition and ion beam sputtering[J]. High Power Laser and Particle Beams, 2003, 15(9): 841-844. (in Chinese).
|
| [6] |
李兆营. 蒸发速率对硅衬底电子束蒸发钛薄膜性能的影响[J]. 电镀与涂饰, 2023, 42(1): 31-34. doi: 10.19289/j.1004-227x.2023.01.006
LI ZH Y. Effect of evaporation rate on properties of Ti film prepared by electron beam evaporation on silicon wafer[J]. Electroplating & Finishing, 2023, 42(1): 31-34. (in Chinese). doi: 10.19289/j.1004-227x.2023.01.006
|
| [7] |
唐晋发, 顾培夫, 刘旭, 等. 现代光学薄膜技术[M]. 杭州: 浙江大学出版社, 2006.
TANG J F, GU P F, LIU X, et al. Modern Optical Thin Film Technology[M]. Hangzhou: Zhejiang University Press, 2006. (in Chinese).
|
| [8] |
任翼. 真空辅助镀膜离子源的设计及其对沉积膜层影响的研究[D]. 杭州: 中国计量大学, 2024.
REN Y. Design of auxiliary ion source for vacuum coating and research of its influence on deposited film[D]. Hangzhou: China Jiliang University, 2024. (in Chinese).
|
| [9] |
荆建行. 离子束辅助低损耗TiO2光学薄膜研究[D]. 成都: 中国科学院大学(中国科学院光电技术研究所), 2021.
JING J X. Study on lon assisted deposition low loss TiO2 optical thin film[D]. Chengdu: The Institute of Optics and Electronics, The Chinese Academy of Sciences, 2021. (in Chinese).
|
| [10] |
张大伟, 黄元申, 贺洪波, 等. 阶段离子束辅助法制备基频减反膜[J]. 光学 精密工程, 2007, 15(10): 1463-1468. doi: 10.3321/j.issn:1004-924x.2007.10.001
ZHANG D W, HUANG Y SH, HE H B, et al. Antireflective film prepared by periodic ion beam assisted deposition[J]. Optics and Precision Engineering, 2007, 15(10): 1463-1468. (in Chinese). doi: 10.3321/j.issn:1004-924x.2007.10.001
|
| [11] |
田晓习. 光学薄膜技术中的基片与薄膜热力学匹配问题研究[D]. 成都: 中国科学院大学(中国科学院光电技术研究所), 2020.
TIAN X X. Study on thermodynamic matching between substrate and films in optical thin film technology[D]. Chengdu: Institute of Optics and Electronics Chinese Academy of Science, 2020. (in Chinese).
|
| [12] |
李波, 王超, 闫涛, 等. 多层高反膜的应力研究[J]. 真空与低温, 2023, 29(2): 146-152. doi: 10.3969/j.issn.1006-7086.2023.02.007
LI B, WANG CH, YAN T, et al. Stress study of multi-layer high reflection films[J]. Vacuum and Cryogenics, 2023, 29(2): 146-152. (in Chinese). doi: 10.3969/j.issn.1006-7086.2023.02.007
|
| [13] |
李阳, 徐均琪, 刘政, 等. 残余应力对介质高反膜面型影响的研究[J]. 真空科学与技术学报, 2021, 41(5): 484-490. doi: 10.13922/j.cnki.cjvst.202009001
LI Y, XU J Q, LIU ZH, et al. Study on the influence of residual stress on dielectric high reflection films[J]. Chinese Journal of Vacuum Science and Technology, 2021, 41(5): 484-490. (in Chinese). doi: 10.13922/j.cnki.cjvst.202009001
|
| [14] |
樊彦峥. 大口径镜面高反射膜制备及面形控制技术[D]. 西安: 西安工业大学, 2021.
FAN Y ZH. Deposition and surface shape control technology of large-aperture mirror high-reflection film[D]. Xian: Xi'an Technological University, 2021. (in Chinese).
|
| [15] |
王振宇. 利用PEALD/MLD技术实现柔性有机电致发光器件的有机无机杂化薄膜封装[D]. 长春: 吉林大学, 2023.
WANG ZH Y. Organic-inorganic hybrid film encapsulation of flexible organic light emitting diodes by PEALD/MLD technology[D]. Changchun: Jilin University, 2023. (in Chinese).
|
| [16] |
WANG ZH Y, CHEN Z Q, WANG J T, et al. Realization of an autonomously controllable process for atomic layer deposition and its encapsulation application in flexible organic light-emitting diodes[J]. Optics Express, 2023, 31(13): 21672-21688. doi: 10.1364/OE.488152
|