Turn off MathJax
Article Contents
TIAN Ying-jie, WEI Xiu-dong, ZHANG Quan-sheng, ZHANG Ya-nan, YU Qiang. Optimal design of aiming strategy for tower solar power stations[J]. Chinese Optics. doi: 10.37188/CO.2025-0128
Citation: TIAN Ying-jie, WEI Xiu-dong, ZHANG Quan-sheng, ZHANG Ya-nan, YU Qiang. Optimal design of aiming strategy for tower solar power stations[J]. Chinese Optics. doi: 10.37188/CO.2025-0128

Optimal design of aiming strategy for tower solar power stations

cstr: 32171.14.CO.2025-0128
Funds:  Supported by National Natural Science Foundation of China General Program (No. 52376219)
More Information
  • Corresponding author: weixiudong211@163.com
  • Received Date: 09 Oct 2025
  • Accepted Date: 10 Dec 2025
  • Available Online: 30 Dec 2025
  • To achieve uniform heat flux distribution on the receiver surface, an optimization method for heliostat aiming strategy in solar power tower plants is proposed. First, the heliostat field is divided into zones based on the calculated instantaneous optical efficiency of heliostats throughout the entire field, with different aiming factors designed for heliostats in different zones. Then, the spot size of each heliostat is calculated according to the aiming factor, and the relative spot size is determined by the ratio of spot size to receiver size, thereby planning the aiming point distribution. Finally, a genetic algorithm is employed to optimize the heliostat aiming point distribution, achieving uniform heat flux distribution on the receiver surface. Taking a hundred-megawatt-scale solar power tower plant as an example, the heliostat aiming strategy is optimized. Under typical spring equinox conditions, the peak heat flux density on the receiver surface is reduced from 1.94 MW/m2 with equatorial aiming to 1.01 MW/m2, improving uniformity by 53.29% while reducing the spillage factor by 0.86%. This ensures efficient and safe operation of the receiver while maintaining high interception efficiency.

     

  • loading
  • [1]
    吕子奎, 房方. 基于能量流的塔式太阳能热发电吸热器动态建模[J]. 太阳能学报, 2022, 43(6): 132-137. doi: 10.19912/j.0254-0096.tynxb.2020-1031

    LYU Z K, FANG F. Dynamic modeling of solar tower receiver based on energy flow[J]. Acta Energiae Solaris Sinica, 2022, 43(6): 132-137. (in Chinese). doi: 10.19912/j.0254-0096.tynxb.2020-1031
    [2]
    MOURAD A, AISSA A, SAID Z, et al. Recent advances on the applications of phase change materials for solar collectors, practical limitations, and challenges: a critical review[J]. Journal of Energy Storage, 2022, 49: 104186. doi: 10.1016/j.est.2022.104186
    [3]
    JIANG K J, TIAN Z Q, ZHANG Q, et al. Dynamic response characteristics of molten salt solar tower power plant utilizing coordinated control strategies for optimized peak shaving performance[J]. Case Studies in Thermal Engineering, 2025, 75: 107061. doi: 10.1016/j.csite.2025.107061
    [4]
    LI X Y, BAI F W. A review on the thermal modeling method for molten salt receivers of concentrating solar power tower plants[J]. Energies, 2025, 18(2): 292. doi: 10.3390/en18020292
    [5]
    OBERKIRSCH L, ZANGER D A V, QUINTO D M, et al. Static optimal control: Real-time optimization within closed-loop aim point control for solar power towers[J]. Solar Energy, 2023, 255: 327-338. doi: 10.1016/j.solener.2023.03.051
    [6]
    ELFEKY K E, WANG Q W. Techno-economic assessment and optimization of the performance of solar power tower plant in Egypt's climate conditions[J]. Energy Conversion and Management, 2023, 280: 116829. doi: 10.1016/j.enconman.2023.116829
    [7]
    SÁNCHEZ-GONZÁLEZ A, KONTOPYRGOS M, MILIDONIS K, et al. Heliostat field aiming strategy based on deterministic optimization: an experimental validation[J]. Renewable Energy, 2024, 236: 121406. doi: 10.1016/j.renene.2024.121406
    [8]
    CUI M SH, ZHANG Q, JIANG K J, et al. A multi-objective control strategy for molten salt external receiver in solar tower power plant[J]. Applied Thermal Engineering, 2025, 275: 126818. doi: 10.1016/j.applthermaleng.2025.126818
    [9]
    VANT-HULL L L. The role of “allowable flux density” in the design and operation of molten-salt solar central receivers[J]. Journal of Solar Energy Engineering, 2002, 124(2): 165-169. doi: 10.1115/1.1464124
    [10]
    SÁNCHEZ-GONZÁLEZ A, RODRÍGUEZ-SÁNCHEZ M R, SANTANA D. Aiming factor to flatten the flux distribution on cylindrical receivers[J]. Energy, 2018, 153: 113-125. doi: 10.1016/j.energy.2018.04.002
    [11]
    SÁNCHEZ-GONZÁLEZ A, RODRÍGUEZ-SÁNCHEZ M R, SANTANA D. Aiming strategy model based on allowable flux densities for molten salt central receivers[J]. Solar Energy, 2017, 157: 1130-1144. doi: 10.1016/j.solener.2015.12.055
    [12]
    COLLADO F J, GUALLAR J. A two-parameter aiming strategy to reduce and flatten the flux map in solar power tower plants[J]. Solar Energy, 2019, 188: 185-189. doi: 10.1016/j.solener.2019.06.001
    [13]
    RAJ M, BHATTACHARYA J. Precise and fast spillage estimation for a central receiver tower based solar plant[J]. Solar Energy, 2023, 265: 112103. doi: 10.1016/j.solener.2023.112103
    [14]
    COLLADO F J, GUALLAR J. Fast and reliable flux map on cylindrical receivers[J]. Solar Energy, 2018, 169: 556-564. doi: 10.1016/j.solener.2018.05.037
    [15]
    SÁNCHEZ-GONZÁLEZ A, SANTANA D. Solar flux distribution on central receivers: a projection method from analytic function[J]. Renewable Energy, 2015, 74: 576-587. doi: 10.1016/j.renene.2014.08.016
    [16]
    RIZVI A A, DANISH S N, EL-LEATHY A, et al. A review and classification of layouts and optimization techniques used in design of heliostat fields in solar central receiver systems[J]. Solar Energy, 2021, 218: 296-311. doi: 10.1016/j.solener.2021.02.011
    [17]
    吴凡路, 闫得杰, 姬琪, 等. 天问一号星下点太阳高度角在轨实时计算方法[J]. 光学 精密工程, 2022, 30(2): 210-216. doi: 10.37188/OPE.20223002.0210

    WU F L, YAN D J, JI Q, et al. On-orbit real-time calculation method of solar elevation angle of sub-satellite point of Tianwen-1[J]. Optics and Precision Engineering, 2022, 30(2): 210-216. (in Chinese). doi: 10.37188/OPE.20223002.0210
    [18]
    SCHWARZBÖZL P, PITZ-PAAL R, SCHMITZ M. Visual HFLCAL-A software tool for layout and optimisation of heliostat fields[C]//Proceedings. 2009. (查阅网上资料, 未找到本条文献信息, 请确认).
    [19]
    ASTOLFI M, BINOTTI M, MAZZOLA S, et al. Heliostat aiming point optimization for external tower receiver[J]. Solar Energy, 2017, 157: 1114-1129. doi: 10.1016/j.solener.2016.03.042
    [20]
    常宁东, 冯春, 程鹏达, 等. 基于Bekker理论改进遗传算法的野外路径优化方法研究[J]. 光学 精密工程, 2023, 31(5): 767-775. doi: 10.37188/OPE.20233105.0767

    CHANG N D, FENG CH, CHENG P D, et al. Research on off-road path optimization algorithm based on Bekker theory improved genetic algorithm[J]. Optics and Precision Engineering, 2023, 31(5): 767-775. (in Chinese). doi: 10.37188/OPE.20233105.0767
    [21]
    杨健, 赵宏宇. 浮点数编码改进遗传算法在平面度误差评定中的研究[J]. 光学 精密工程, 2017, 25(3): 706-711. doi: 10.3788/OPE.20172503.0706

    YANG J, ZHAO H Y. The research of floating-point codingimproved genetic algorithmin flatnesserror evaluation[J]. Optics and Precision Engineering, 2017, 25(3): 706-711. (in Chinese). doi: 10.3788/OPE.20172503.0706
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article views(19) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return