Turn off MathJax
Article Contents
ZHAI JIE, LU YU, WANG Xin-xin, XIA Yuan-qing. Quantitative prediction of laser-cut slag adhesion by integrating image and frequency domain features[J]. Chinese Optics. doi: 10.37188/CO.2025-0125
Citation: ZHAI JIE, LU YU, WANG Xin-xin, XIA Yuan-qing. Quantitative prediction of laser-cut slag adhesion by integrating image and frequency domain features[J]. Chinese Optics. doi: 10.37188/CO.2025-0125

Quantitative prediction of laser-cut slag adhesion by integrating image and frequency domain features

cstr: 32171.14.CO.2025-0125
Funds:  Supported by Tianjin Science and Technology Program Project (No.24YDTPJC00510); Hebei Key Laboratory of Advanced Laser Technology and Equipment(No. HBKL-ALTE2025003)
More Information
  • Corresponding author: luyu@tute.edu.cn
  • Received Date: 29 Sep 2025
  • Accepted Date: 25 Nov 2025
  • Available Online: 30 Dec 2025
  • To achieve precise quantification of slag adhesion and process optimization in laser cutting, this study investigates a convolutional neural network (CNN)-based prediction method that integrates both image and frequency-domain features. A dataset of 2160 cross-sectional images of 1 mm thick 304 stainless steel was constructed. From these images, key dross characteristics-area, height, and perimeter were accurately extracted using a combination of image processing techniques including Gaussian blur, adaptive thresholding, and morphological closing operations. To evaluate the predictive potential of different input representations, both RGB images and binarized images transformed via wavelet packet decomposition (WPD) were used as model inputs. The regression performance of three CNN architectures-VGG16, ResNet50, and DenseNet121 was systematically compared. Experimental results demonstrate that VGG16 achieved the highest prediction accuracy for dross area and height using RGB images, with mean absolute errors (MAE) of 0.019 mm2 and 0.044 mm, respectively. For predicting the perimeter, which better reflects dynamic process behavior, the WPD frequency-domain input path yielded a significantly improved MAE of 0.094 mm and a normalized MAE (nMAE) of 5.25%. The regression fit between predicted and actual values showed a slope of 0.83 and a coefficient of determination (R2) of 0.86, indicating a strong linear correlation. This study confirms the effectiveness of VGG16 in predicting dross-related features and demonstrates the capability of WPD-derived frequency-domain features in capturing transient process information during laser cutting. The proposed methodology offers a reliable quantitative tool for intelligent process evaluation and closed-loop optimization.

     

  • loading
  • [1]
    GABZDY J T. Effects of gases on laser cutting of stainless steels[C]. Proceedings of the Laser Materials Processing Conference, Laser Institute of America, 1996: 39-44.
    [2]
    SHARIFF S M, SUNDARARAJAN G, JOSHI S V. Parametric influence on cut quality attributes and generation of processing maps for laser cutting[J]. Journal of Laser Applications, 1999, 11(2): 54-63. doi: 10.2351/1.521886
    [3]
    陈宇翔, 高亮. 正交法分析激光切割高温合金钢工艺参数[J]. 激光与光电子学进展, 2016, 53(11): 111403. doi: 10.3788/LOP53.111403

    CHEN Y X, GAO L. Analysis of processing parameters for laser cutting high-temperature alloy steel by orthogonal method[J]. Laser & Optoelectronics Progress, 2016, 53(11): 111403. (in Chinese). doi: 10.3788/LOP53.111403
    [4]
    PARTHIBAN A, DHANASEKARAN C, SIVAGANESAN S, et al. Modeling on surface cut quality of CO2 laser cutting for Austenitic Stainless steel sheet[J]. Materials Today: Proceedings, 2020, 21: 823-827. doi: 10.1016/j.matpr.2019.07.428
    [5]
    王勇, 陈娇娇, 张鹏, 等. 基于响应面-遗传算法的不锈钢激光切割工艺参数优化与试验研究[J]. 应用激光, 2023, 43(11): 85-94. doi: 10.14128/j.cnki.al.20234311.085

    WANG Y, CHEN J J, ZHANG P, et al. Process parameter optimization and experimental research on stainless steel laser cutting based on response surface-genetic method[J]. Applied Laser, 2023, 43(11): 85-94. (in Chinese). doi: 10.14128/j.cnki.al.20234311.085
    [6]
    SHIN J S, OH S Y, PARK H, et al. High-speed fiber laser cutting of thick stainless steel for dismantling tasks[J]. Optics & Laser Technology, 2017, 94: 244-247. doi: 10.1016/j.optlastec.2017.03.040
    [7]
    OH S Y, SHIN J S, KIM T S, et al. Effect of nozzle types on the laser cutting performance for 60-mm-thick stainless steel[J]. Optics & Laser Technology, 2019, 119: 105607. doi: 10.1016/j.optlastec.2019.105607
    [8]
    SHIN J S, SONG K H, OH S Y, et al. Laser cutting studies on 10-60 mm thick stainless steels with a short focus head for nuclear decommissioning[J]. Optics & Laser Technology, 2024, 169: 110121. doi: 10.1016/j.optlastec.2023.110121
    [9]
    SHIN J S. Laser cutting study on 30 mm thick stainless steel for application in decommissioning of calandria shells in heavy-water reactors[J]. Nuclear Engineering and Technology, 2025, 57(3): 103242. doi: 10.1016/j.net.2024.10.004
    [10]
    陈达, 章轩, 赵圣斌, 等. 基于深度学习的激光熔覆层表面缺陷识别研究[J]. 光学学报, 2025, 45(9): 0915001. doi: 10.3788/AOS250462

    CHEN D, ZHANG X, ZHAO SH B, et al. Surface defect recognition of laser cladding layer based on deep learning[J]. Acta Optica Sinica, 2025, 45(9): 0915001. (in Chinese). doi: 10.3788/AOS250462
    [11]
    王颖, 高胜, 戴哲. 基于CNN-Transformer混合网络的焊缝激光条纹分割[J]. 中国激光, 2024, 51(24): 2402110. doi: 10.3788/CJL240710

    WANG Y, GAO SH, DAI ZH. Laser stripe segmentation of weld seam based on CNN-Transformer hybrid networks[J]. Chinese Journal of Lasers, 2024, 51(24): 2402110. (in Chinese). doi: 10.3788/CJL240710
    [12]
    张臣, 胡佩佩, 朱新旺, 等. 基于高密度点云的激光焊接缺陷智能在线检测(特邀)[J]. 中国激光, 2024, 51(4): 0402105. doi: 10.3788/CJL231293

    ZHANG CH, HU P P, ZHU X W, et al. Intelligent online detection of laser welding defects based on high density point clouds (invited)[J]. Chinese Journal of Lasers, 2024, 51(4): 0402105. (in Chinese). doi: 10.3788/CJL231293
    [13]
    马炜鑫, 谢冠明, 林杰凯, 等. 基于机器视觉的激光焊接气孔缺陷智能检测方法[J]. 激光与光电子学进展, 2026, 63(1): 0114012. (查阅网上资料, 未找到对应的页码信息, 请确认).

    MA W X, XIE G M, LIN J K, et al. Laser welding porosity defect detection method based on machine vision[J]. Laser & Optoelectronics Progress, 2026, 63(1): 0114012. (in Chinese).
    [14]
    REN X F, FAN J W, PAN R, et al. Modeling and process parameter optimization of laser cutting based on artificial neural network and intelligent optimization algorithm[J]. The International Journal of Advanced Manufacturing Technology, 2023, 127(3): 1177-1188. doi: 10.1007/s00170-023-11543-6
    [15]
    CHAKI S, BOSE D, BATHE R N. Multi-objective optimization of pulsed Nd: YAG laser cutting process using entropy-based ANN-PSO model[J]. Lasers in Manufacturing and Materials Processing, 2020, 7(1): 88-110. doi: 10.1007/s40516-019-00109-8
    [16]
    何鹏, 孙帆, 胡小方, 等. 小样本激光切割工艺参数预测模型优化[J]. 激光杂志, 2021, 42(12): 170-175. doi: 10.14016/j.cnki.jgzz.2022.12.170

    HE P, SUN F, HU X F, et al. Optimization of prediction system for small sample laser cutting process parameters[J]. Laser Journal, 2021, 42(12): 170-175. (in Chinese). doi: 10.14016/j.cnki.jgzz.2022.12.170
    [17]
    钟毅, 栾显晔, 李晓宇, 等. 碳钢板激光切割工艺分析及优化[J]. 制造技术与机床, 2024(2): 38-45. doi: 10.19287/j.mtmt.1005-2402.2024.02.005

    ZHONG Y, LUAN X Y, LI X Y, et al. Analysis and optimization of laser cutting process of carbon steel plate[J]. Manufacturing Technology & Machine Tool, 2024(2): 38-45. (in Chinese). doi: 10.19287/j.mtmt.1005-2402.2024.02.005
    [18]
    FRANCESCHETTI L, PACHER M, TANELLI M, et al. Dross attachment estimation in the laser-cutting process via Convolutional Neural Networks (CNN)[C]. Proceedings of the 28th Mediterranean Conference on Control and Automation, IEEE, 2020: 850-855.
    [19]
    ADELMANN B, SCHLEIER M, HELLMANN R. Laser cut interruption detection from small images by using convolutional neural network[J]. Sensors, 2021, 21(2): 655. doi: 10.3390/s21020655
    [20]
    TATZEL L, LEÓN F P. Image-based roughness estimation of laser cut edges with a convolutional neural network[J]. Procedia CIRP, 2020, 94: 469-473. doi: 10.1016/j.procir.2020.09.166
    [21]
    TATZEL L, TAMIMI O A, HAUEISE T, et al. Image-based modelling and visualisation of the relationship between laser-cut edge and process parameters[J]. Optics & Laser Technology, 2021, 141: 107028. doi: 10.1016/j.optlastec.2021.107028
    [22]
    HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2016: 770-778.
    [23]
    HE K M, ZHANG X Y, REN S Q, et al. Identity mappings in deep residual networks[C]. Proceedings of the 14th European Conference on Computer Vision, Springer, 2016: 630-645.
    [24]
    AL-HAIJA Q A, ADEBANJO A. Breast cancer diagnosis in histopathological images using ResNet-50 convolutional neural network[C]. Proceedings of the IEEE International IOT, Electronics and Mechatronics Conference, IEEE, 2020: 1-7.
    [25]
    MUKTI I Z, BISWAS D. Transfer learning based plant diseases detection using ResNet50[C]. Proceedings of the 4th International Conference on Electrical Information and Communication Technology, IEEE, 2019: 1-6.
    [26]
    LIU Y, ZHANG Z L, LIU X, et al. Deep learning-based image classification for online multi-coal and multi-class sorting[J]. Computers & Geosciences, 2021, 157: 104922. doi: 10.1016/j.cageo.2021.104922
    [27]
    MASCARENHAS S, AGARWAL M. A comparison between VGG16, VGG19 and ResNet50 architecture frameworks for Image Classification[C]. Proceedings of 2021 International Conference on Disruptive Technologies for Multi-Disciplinary Research and Applications, IEEE, 2021, 1: 96-99.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(5)

    Article views(20) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return