| Citation: | ZHAI JIE, LU YU, WANG Xin-xin, XIA Yuan-qing. Quantitative prediction of laser-cut slag adhesion by integrating image and frequency domain features[J]. Chinese Optics. doi: 10.37188/CO.2025-0125 |
To achieve precise quantification of slag adhesion and process optimization in laser cutting, this study investigates a convolutional neural network (CNN)-based prediction method that integrates both image and frequency-domain features. A dataset of
| [1] |
GABZDY J T. Effects of gases on laser cutting of stainless steels[C]. Proceedings of the Laser Materials Processing Conference, Laser Institute of America, 1996: 39-44.
|
| [2] |
SHARIFF S M, SUNDARARAJAN G, JOSHI S V. Parametric influence on cut quality attributes and generation of processing maps for laser cutting[J]. Journal of Laser Applications, 1999, 11(2): 54-63. doi: 10.2351/1.521886
|
| [3] |
陈宇翔, 高亮. 正交法分析激光切割高温合金钢工艺参数[J]. 激光与光电子学进展, 2016, 53(11): 111403. doi: 10.3788/LOP53.111403
CHEN Y X, GAO L. Analysis of processing parameters for laser cutting high-temperature alloy steel by orthogonal method[J]. Laser & Optoelectronics Progress, 2016, 53(11): 111403. (in Chinese). doi: 10.3788/LOP53.111403
|
| [4] |
PARTHIBAN A, DHANASEKARAN C, SIVAGANESAN S, et al. Modeling on surface cut quality of CO2 laser cutting for Austenitic Stainless steel sheet[J]. Materials Today: Proceedings, 2020, 21: 823-827. doi: 10.1016/j.matpr.2019.07.428
|
| [5] |
王勇, 陈娇娇, 张鹏, 等. 基于响应面-遗传算法的不锈钢激光切割工艺参数优化与试验研究[J]. 应用激光, 2023, 43(11): 85-94. doi: 10.14128/j.cnki.al.20234311.085
WANG Y, CHEN J J, ZHANG P, et al. Process parameter optimization and experimental research on stainless steel laser cutting based on response surface-genetic method[J]. Applied Laser, 2023, 43(11): 85-94. (in Chinese). doi: 10.14128/j.cnki.al.20234311.085
|
| [6] |
SHIN J S, OH S Y, PARK H, et al. High-speed fiber laser cutting of thick stainless steel for dismantling tasks[J]. Optics & Laser Technology, 2017, 94: 244-247. doi: 10.1016/j.optlastec.2017.03.040
|
| [7] |
OH S Y, SHIN J S, KIM T S, et al. Effect of nozzle types on the laser cutting performance for 60-mm-thick stainless steel[J]. Optics & Laser Technology, 2019, 119: 105607. doi: 10.1016/j.optlastec.2019.105607
|
| [8] |
SHIN J S, SONG K H, OH S Y, et al. Laser cutting studies on 10-60 mm thick stainless steels with a short focus head for nuclear decommissioning[J]. Optics & Laser Technology, 2024, 169: 110121. doi: 10.1016/j.optlastec.2023.110121
|
| [9] |
SHIN J S. Laser cutting study on 30 mm thick stainless steel for application in decommissioning of calandria shells in heavy-water reactors[J]. Nuclear Engineering and Technology, 2025, 57(3): 103242. doi: 10.1016/j.net.2024.10.004
|
| [10] |
陈达, 章轩, 赵圣斌, 等. 基于深度学习的激光熔覆层表面缺陷识别研究[J]. 光学学报, 2025, 45(9): 0915001. doi: 10.3788/AOS250462
CHEN D, ZHANG X, ZHAO SH B, et al. Surface defect recognition of laser cladding layer based on deep learning[J]. Acta Optica Sinica, 2025, 45(9): 0915001. (in Chinese). doi: 10.3788/AOS250462
|
| [11] |
王颖, 高胜, 戴哲. 基于CNN-Transformer混合网络的焊缝激光条纹分割[J]. 中国激光, 2024, 51(24): 2402110. doi: 10.3788/CJL240710
WANG Y, GAO SH, DAI ZH. Laser stripe segmentation of weld seam based on CNN-Transformer hybrid networks[J]. Chinese Journal of Lasers, 2024, 51(24): 2402110. (in Chinese). doi: 10.3788/CJL240710
|
| [12] |
张臣, 胡佩佩, 朱新旺, 等. 基于高密度点云的激光焊接缺陷智能在线检测(特邀)[J]. 中国激光, 2024, 51(4): 0402105. doi: 10.3788/CJL231293
ZHANG CH, HU P P, ZHU X W, et al. Intelligent online detection of laser welding defects based on high density point clouds (invited)[J]. Chinese Journal of Lasers, 2024, 51(4): 0402105. (in Chinese). doi: 10.3788/CJL231293
|
| [13] |
马炜鑫, 谢冠明, 林杰凯, 等. 基于机器视觉的激光焊接气孔缺陷智能检测方法[J]. 激光与光电子学进展, 2026, 63(1): 0114012. (查阅网上资料, 未找到对应的页码信息, 请确认).
MA W X, XIE G M, LIN J K, et al. Laser welding porosity defect detection method based on machine vision[J]. Laser & Optoelectronics Progress, 2026, 63(1): 0114012. (in Chinese).
|
| [14] |
REN X F, FAN J W, PAN R, et al. Modeling and process parameter optimization of laser cutting based on artificial neural network and intelligent optimization algorithm[J]. The International Journal of Advanced Manufacturing Technology, 2023, 127(3): 1177-1188. doi: 10.1007/s00170-023-11543-6
|
| [15] |
CHAKI S, BOSE D, BATHE R N. Multi-objective optimization of pulsed Nd: YAG laser cutting process using entropy-based ANN-PSO model[J]. Lasers in Manufacturing and Materials Processing, 2020, 7(1): 88-110. doi: 10.1007/s40516-019-00109-8
|
| [16] |
何鹏, 孙帆, 胡小方, 等. 小样本激光切割工艺参数预测模型优化[J]. 激光杂志, 2021, 42(12): 170-175. doi: 10.14016/j.cnki.jgzz.2022.12.170
HE P, SUN F, HU X F, et al. Optimization of prediction system for small sample laser cutting process parameters[J]. Laser Journal, 2021, 42(12): 170-175. (in Chinese). doi: 10.14016/j.cnki.jgzz.2022.12.170
|
| [17] |
钟毅, 栾显晔, 李晓宇, 等. 碳钢板激光切割工艺分析及优化[J]. 制造技术与机床, 2024(2): 38-45. doi: 10.19287/j.mtmt.1005-2402.2024.02.005
ZHONG Y, LUAN X Y, LI X Y, et al. Analysis and optimization of laser cutting process of carbon steel plate[J]. Manufacturing Technology & Machine Tool, 2024(2): 38-45. (in Chinese). doi: 10.19287/j.mtmt.1005-2402.2024.02.005
|
| [18] |
FRANCESCHETTI L, PACHER M, TANELLI M, et al. Dross attachment estimation in the laser-cutting process via Convolutional Neural Networks (CNN)[C]. Proceedings of the 28th Mediterranean Conference on Control and Automation, IEEE, 2020: 850-855.
|
| [19] |
ADELMANN B, SCHLEIER M, HELLMANN R. Laser cut interruption detection from small images by using convolutional neural network[J]. Sensors, 2021, 21(2): 655. doi: 10.3390/s21020655
|
| [20] |
TATZEL L, LEÓN F P. Image-based roughness estimation of laser cut edges with a convolutional neural network[J]. Procedia CIRP, 2020, 94: 469-473. doi: 10.1016/j.procir.2020.09.166
|
| [21] |
TATZEL L, TAMIMI O A, HAUEISE T, et al. Image-based modelling and visualisation of the relationship between laser-cut edge and process parameters[J]. Optics & Laser Technology, 2021, 141: 107028. doi: 10.1016/j.optlastec.2021.107028
|
| [22] |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2016: 770-778.
|
| [23] |
HE K M, ZHANG X Y, REN S Q, et al. Identity mappings in deep residual networks[C]. Proceedings of the 14th European Conference on Computer Vision, Springer, 2016: 630-645.
|
| [24] |
AL-HAIJA Q A, ADEBANJO A. Breast cancer diagnosis in histopathological images using ResNet-50 convolutional neural network[C]. Proceedings of the IEEE International IOT, Electronics and Mechatronics Conference, IEEE, 2020: 1-7.
|
| [25] |
MUKTI I Z, BISWAS D. Transfer learning based plant diseases detection using ResNet50[C]. Proceedings of the 4th International Conference on Electrical Information and Communication Technology, IEEE, 2019: 1-6.
|
| [26] |
LIU Y, ZHANG Z L, LIU X, et al. Deep learning-based image classification for online multi-coal and multi-class sorting[J]. Computers & Geosciences, 2021, 157: 104922. doi: 10.1016/j.cageo.2021.104922
|
| [27] |
MASCARENHAS S, AGARWAL M. A comparison between VGG16, VGG19 and ResNet50 architecture frameworks for Image Classification[C]. Proceedings of 2021 International Conference on Disruptive Technologies for Multi-Disciplinary Research and Applications, IEEE, 2021, 1: 96-99.
|