Turn off MathJax
Article Contents
TIAN Xing, CAO Li-xia. Research on spatial resolution of a single light field camera based on forward ray tracing technique[J]. Chinese Optics. doi: 10.37188/CO.2025-0119
Citation: TIAN Xing, CAO Li-xia. Research on spatial resolution of a single light field camera based on forward ray tracing technique[J]. Chinese Optics. doi: 10.37188/CO.2025-0119

Research on spatial resolution of a single light field camera based on forward ray tracing technique

cstr: 32171.14.CO.2025-0119
Funds:  Supported by National Natural Science Foundtion of China (No. 12302370)
More Information
  • Corresponding author: caolx2019@gmail.com
  • Received Date: 17 Sep 2025
  • Rev Recd Date: 14 Oct 2025
  • Accepted Date: 25 Nov 2025
  • Available Online: 03 Dec 2025
  • In the process of 3D scene reconstruction, the spatial resolution of the light field camera (LFC) affects the recoverable spatial details as well as the depth resolution, thereby influencing the accuracy of the 3D reconstruction. Therefore, calculating and analyzing the spatial resolution of the LFC is crucial for identifying the high and low resolution regions. In this paper, a calculation method for the spatial resolution of an LFC is explored based on the forward ray-tracing technique, which has the advantage of high accuracy. The spatial resolutions of LFC 1.0 and LFC 2.0 under different microlens array configurations are quantitatively calculated and compared. In addition, the effects of the inverse magnification (Ml) of the main lens on the depth resolution of the LFC are investigated. The results show that the LFC exhibits higher depth resolution in regions away from the intersection of the object plane and the optical axis. The depth resolution of LFC 2.0 near the region of (0,0,0) is better than that of LFC 1.0. For a microlens array arranged in a square pattern, the lateral resolution of LFC 2.0 shows a slight improvement over that of LFC 1.0. The depth resolution of the LFC 1.0 gradually decreases as Ml increases.

     

  • loading
  • [1]
    朱效宇. 单相机光场成像三维流场测量方法与系统研究[D]. 南京: 东南大学, 2022.

    ZHU X Y. Study of three-dimensional flow field measurement with a single light field camera[D]. Nanjing: Southeast University, 2022. (in Chinese).
    [2]
    LYNCH K, FAHRINGER T, THUROW B. Three-dimensional particle image velocimetry using a plenoptic camera[C]//50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, AIAA, 2012: AIAA 2012-1056.
    [3]
    吴治安. 光场成像三维流场测量系统体标定方法研究[D]. 南京: 东南大学, 2021.

    WU ZH A. Study on volumetric calibration method of light field particle image velocimetry for 3D flow measurement[D]. Nanjing: Southeast University, 2021. (in Chinese).
    [4]
    SHI SH X, DING J F, NEW T H, et al. Volumetric calibration enhancements for single-camera light-field PIV[J]. Experiments in Fluids, 2019, 60(1): 21. doi: 10.1007/s00348-018-2670-5
    [5]
    顾高霏, 赵军, 孔明, 等. 基于光场相机层析法的颗粒三维位置测量[J]. 光子学报, 2020, 49(8): 0812002.

    GU G F, ZHAO J, KONG M, et al. Tomographic three-dimensional particle position measurement based on light field camera[J]. Acta Photonica Sinica, 2020, 49(8): 0812002. (in Chinese).
    [6]
    SHI SH X, DING J F, NEW T H, et al. Light-field camera-based 3D volumetric particle image velocimetry with dense ray tracing reconstruction technique[J]. Experiments in Fluids, 2017, 58(7): 78. doi: 10.1007/s00348-017-2365-3
    [7]
    吴旗, 朱效宇, 许传龙. 基于物理方程的高分辨率光场层析粒子图像测速技术[J]. 光学学报, 2025, 45(1): 0112007.

    WU Q, ZHU X Y, XU CH L. High-resolution light field chromatography particle image velocimetry based on physical equation[J]. Acta Optica Sinica, 2025, 45(1): 0112007. (in Chinese).
    [8]
    SHI SH X, DING J F, ATKINSON C, et al. A detailed comparison of single-camera light-field PIV and tomographic PIV[J]. Experiments in Fluids, 2018, 59(3): 46. doi: 10.1007/s00348-018-2500-9
    [9]
    MEI D, DING J F, SHI SH X, et al. High resolution volumetric dual-camera light-field PIV[J]. Experiments in Fluids, 2019, 60(8): 132. doi: 10.1007/s00348-019-2781-7
    [10]
    ZHU X Y, HOSSAIN M M, LI J, et al. Weight coefficient calculation through equivalent ray tracing method for light field particle image velocimetry[J]. Measurement, 2022, 193: 110982. doi: 10.1016/j.measurement.2022.110982
    [11]
    CAO L X, ZHANG B, LI J, et al. Characteristics of tomographic reconstruction of light-field Tomo-PIV[J]. Optics Communications, 2019, 442: 132-147. doi: 10.1016/j.optcom.2019.03.026
    [12]
    ZHU X Y, ZHANG B, LI J, et al. Volumetric resolution of light field imaging and its effect on the reconstruction of light field PIV[J]. Optics Communications, 2020, 462: 125263. doi: 10.1016/j.optcom.2020.125263
    [13]
    ZHU X Y, WU ZH A, LI J, et al. A pre-recognition SART algorithm for the volumetric reconstruction of the light field PIV[J]. Optics and Lasers in Engineering, 2021, 143: 106625.
    [14]
    ZHU X Y, XU CH L, HOSSAIN M M, et al. Approach to select optimal cross-correlation parameters for light field particle image velocimetry[J]. Physics of Fluids, 2022, 34(7): 073601. doi: 10.1063/5.0098933
    [15]
    CAO L X, ZHANG B, HOSSAIN M M, et al. Tomographic reconstruction of light field PIV based on a backward ray-tracing technique[J]. Measurement Science and Technology, 2021, 32(4): 044007. doi: 10.1088/1361-6501/abd281
    [16]
    ZHU X Y, XU CH L, HOSSAIN M M, et al. Fast and accurate flow measurement through dual-camera light field particle image velocimetry and ordered-subset algorithm[J]. Physics of Fluids, 2023, 35(6): 063603. doi: 10.1063/5.0153135
    [17]
    FAHRINGER T W, THUROW B S. Filtered refocusing: a volumetric reconstruction algorithm for plenoptic-PIV[J]. Measurement Science and Technology, 2016, 27(9): 094005. doi: 10.1088/0957-0233/27/9/094005
    [18]
    张志远. 三维流场层析粒子图像变分光流速度测量算法研究[D]. 武汉: 华中科技大学, 2024.

    ZHANG ZH Y. Research on variational optical flow velocity measurement algorithm for three-dimensional flow field tomographic particle image[D]. Wuhan: Huazhong University of Science and Technology, 2024. (in Chinese).
    [19]
    ZHAO ZH, YAO CH H, SHI SH X, et al. Resolution analysis on light-field particle image velocimetry[J]. Journal of the Optical Society of America A, 2023, 40(4): 729-740. doi: 10.1364/JOSAA.474866
    [20]
    DEEM E A, ZHANG Y, CATTAFESTA L N, et al. On the resolution of plenoptic PIV[J]. Measurement Science and Technology, 2016, 27(8): 084003. doi: 10.1088/0957-0233/27/8/084003
    [21]
    RUAN L Y, CHEN B, LI J ZH, et al. Learning to deblur using light field generated and real defocus images[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2022: 16283-16292.
    [22]
    ZHAO ZH, JI Y, HE Y L, et al. Binocular Scheimpflug light-field PIV[J]. Optics Communications, 2025, 574: 131176. doi: 10.1016/j.optcom.2024.131176
    [23]
    LIU Y D, ZHU M J, WANG T X, et al. Spatial resolution of light field sectioning pyrometry for flame temperature measurement[J]. Optics and Lasers in Engineering, 2021, 140: 106545. doi: 10.1016/j.optlaseng.2021.106545
    [24]
    LYU W Q, SHENG H, KE W, et al. Advances in light field spatial super-resolution: a comprehensive literature survey[J]. IEEE Access, 2025, 13: 18470-18497. doi: 10.1109/ACCESS.2025.3532610
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(3)

    Article views(69) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return