Turn off MathJax
Article Contents
CHEN Shuo, PAN Yu, LI Hong-yang, ZHANG Yan-dong, LI Bo, LI Han-shuang, GU Guo-chao, FAN Ji-ze, ZHANG Xu. Wide temperature range athermal design of low F-Number optical systems[J]. Chinese Optics. doi: 10.37188/CO.2025-0102
Citation: CHEN Shuo, PAN Yu, LI Hong-yang, ZHANG Yan-dong, LI Bo, LI Han-shuang, GU Guo-chao, FAN Ji-ze, ZHANG Xu. Wide temperature range athermal design of low F-Number optical systems[J]. Chinese Optics. doi: 10.37188/CO.2025-0102

Wide temperature range athermal design of low F-Number optical systems

cstr: 32171.14.CO.2025-0102
Funds:  Supported by the National Key Research and Development Program of China (No. 2022YFB3903202).
More Information
  • In wide-temperature-range applications, traditional optical systems often struggle to maintain stable imaging quality, primarily because conventional athermal design methods fail to fully account for the differences in the linear expansion coefficients and refractive index temperature coefficient of glass materials at high and low temperatures. To address this issue, this paper proposes an athermal design method for wide temperature ranges. By reconstructing the thermal aberration modeling process, the method accurately characterizes the nonlinear response of thermal aberrations to temperature variation, thereby selecting glass material combinations that minimize the overall thermal optical power within the wide temperature range. In combination with the thermal expansion properties of the housing material, it effectively suppresses system focal shift. To validate the effectiveness of the proposed method, an optical system with a focal length of 100 mm, an F-number of 2.2, and a field of view of 7° was designed. Simulation results show that within the temperature range of −30°C to 270°C, the system consistently maintains high imaging performance. The modulation transfer function (MTF) remains above 0.5 at 56 lp/mm across all fields and temperatures, the spot diameter is less than 9 μm, and more than 90% of the energy is enclosed within an 18 μm circle. The above results fully verify the effectiveness of the proposed method and provide strong support for athermal design of optical systems under wide temperature ranges. Meanwhile, the method demonstrates good engineering adaptability and shows broad application prospects in the design of imaging systems for complex environments.

     

  • loading
  • [1]
    李文雄, 申军立, 张星祥, 等. 低温红外离轴三反准直系统设计[J]. 光学 精密工程, 2023, 31(9): 1285-1294. doi: 10.37188/OPE.20233109.1285

    LI W X, SHEN J L, ZHANG X X, et al. Design of low temperature infrared off-axis three-mirror collimation system[J]. Optics and Precision Engineering, 2023, 31(9): 1285-1294. (in Chinese). doi: 10.37188/OPE.20233109.1285
    [2]
    张运方, 朱飞虎, 郑岩, 等. 小行星地形探测激光雷达接收光学系统设计[J]. 光学 精密工程, 2025, 33(4): 521-531. doi: 10.37188/OPE.20253304.0521

    ZHANG Y F, ZHU F H, ZHENG Y, et al. Design of receiving optical system for asteroid terrain detection LiDAR[J]. Optics and Precision Engineering, 2025, 33(4): 521-531. (in Chinese). doi: 10.37188/OPE.20253304.0521
    [3]
    LIU Y, LI J H, ZHANG P F, et al. Design method for a small F-number two-material uniform dispersion immersion grating imaging spectrometer[J]. Optics Express, 2023, 31(21): 35054-35067. doi: 10.1364/OE.502867
    [4]
    ZHANG L, LI B, LI H SH, et al. Method for designing a grid-slit spectrometer with low spectral-line bending[J]. Optics and Lasers in Engineering, 2024, 183: 108514. doi: 10.1016/j.optlaseng.2024.108514
    [5]
    LIN J, ZHAO L J, WANG J H. Numerical investigation on aero-thermodynamic characteristics of wedge shaped nose cone of near space supersonic flight[J]. Applied Mechanics and Materials, 2014, 541-542: 608-612.
    [6]
    MANGANO M, MARTINS J R R A. Multipoint aerodynamic shape optimization for subsonic and supersonic regimes[J]. Journal of Aircraft, 2021, 58(3): 650-662. doi: 10.2514/1.C036216
    [7]
    LIU T, WANG CH, YU Y, et al. Passive athermal optical design method considering thermal-induced surface deformation[J]. Photonics, 2021, 8(9): 396. doi: 10.3390/photonics8090396
    [8]
    SHEN B L, CHANG J, NIU Y J, et al. Deformable mirror-based optical design of dynamic local athermal longwave infrared optical systems[J]. Optics and Lasers in Engineering, 2018, 106: 1-9.
    [9]
    TAMAGAWA Y, TAJIME T. Expansion of an athermal chart into a multilens system with thick lenses spaced apart[J]. Optical Engineering, 1996, 35(10): 3001-3006. doi: 10.1117/1.600984
    [10]
    MA Y J, YANG H T, CHEN W N, et al. Athermal and apochromatic design of equivalent two-component optical system in 3D glass diagram[J]. Photonics, 2024, 11(8): 719. doi: 10.3390/photonics11080719
    [11]
    LIM T Y, KIM Y S, PARK S C. Achromatic and athermal design of an optical system with corrected petzval curvature on a three-dimensional glass chart[J]. Current Optics and Photonics, 2017, 1(4): 378-388.
    [12]
    AHN B I, KIM Y S, PARK S C. Athermal and achromatic design for a night vision camera using tolerable housing boundary on an expanded athermal glass map[J]. Current Optics and Photonics, 2017, 1(2): 125-131. doi: 10.3807/COPP.2017.1.2.125
    [13]
    KUCUKCELEBI D, AYDEMIR S E. Passive athermalization of MWIR optical designs utilizing different infrared optical materials[J]. Proceedings of SPIE, 2022, 12217: 1221705.
    [14]
    LI J, DING Y L, LIU X J, et al. Achromatic and athermal design of aerial catadioptric optical systems by efficient optimization of materials[J]. Sensors, 2023, 23(4): 1754. doi: 10.3390/s23041754
    [15]
    马志远, 王鹏飞, 吴志强, 等. 基于1stOpt求解光学玻璃折射率温度系数经验公式常量的方法[J]. 光子学报, 2017, 46(6): 0616002. doi: 10.3788/gzxb20174606.0616002

    MA ZH Y, WANG P F, WU ZH Q, et al. A method for solving the refractive index temperature coefficient empirical formula constants of optical glasses based on 1stOpt[J]. Acta Photonica Sinica, 2017, 46(6): 0616002. (in Chinese). doi: 10.3788/gzxb20174606.0616002
    [16]
    唐晗, 夏丽昆, 刘炼, 等. 大变倍比制冷型长波红外变焦光学系统设计[J]. 中国光学(中英文), 2024, 17(1): 69-78. doi: 10.37188/CO.2023-0052

    TANG H, XIA L K, LIU L, et al. Design of cooled long-wave infrared optical system with large zooming range[J]. Chinese Optics, 2024, 17(1): 69-78. (in Chinese). doi: 10.37188/CO.2023-0052
    [17]
    张丽芝, 陆秋萍, 段帆琳, 等. 长焦镜头光学系统设计及无热化研究[J]. 光学学报, 2024, 44(8): 0822004. doi: 10.3788/AOS231926

    ZHANG L ZH, LU Q P, DUAN F L, et al. Optical system design and athermalization of telephoto lens[J]. Acta Optica Sinica, 2024, 44(8): 0822004. (in Chinese). doi: 10.3788/AOS231926
    [18]
    MONROE J A, FEHLBERG O, ZAVISLAN J M. Athermalizing mounted doublets with ALLVAR alloys[J]. Proceedings of SPIE, 2024, 13131: 131310A.
    [19]
    JIANG CH, LIU M Q. Athermalization of a lens system by glass selection using simulated annealing with memory augmentation[J]. Optics Express, 2024, 32(8): 14860-14875. doi: 10.1364/OE.521560
    [20]
    ZHANG L, LI J H, LI H SH, et al. A high resolution prism-grating panoramic imaging spectrometer based on occultation observations[J]. Optics Communications, 2024, 560: 130436. doi: 10.1016/j.optcom.2024.130436
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(4)

    Article views(24) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return