| Citation: | CHEN Li, LIU Jun-hao, BI Shi-wen, WU Bei-chen, FU Tian-jiao, ZHANG Xing-xiang. Design of space optical systems and analysis of their thermal stability[J]. Chinese Optics. doi: 10.37188/CO.2025-0097 |
Off-axis reflective optical systems are widely employed in Earth observation and mapping owing to their advantages of wide field of view (FOV), high image quality, and stable interior orientation elements. To address the degraded off-axis image quality and thermally induced pointing drift of initial designs from conventional aberration-cancellation methods, this study analytically derives the third-order aberration coefficients of a three-mirror system, assuming a stop at the secondary mirror and symmetric axial spacing between the primary and tertiary mirrors. To further enhance imaging performance, fourth-order aspheric terms are introduced on both the primary and tertiary mirrors, thereby increasing the degrees of freedom for optimization. A comprehensive image-quality evaluation function incorporating quasi-telecentric constraints is constructed, and a hybrid genetic algorithm-sequential quadratic programming (GA-SQP) approach is employed to obtain an optimized initial configuration. The resulting system achieves a focal length of 260 mm, an F-number of 10, and a 7° × 30° FOV, with a modulation transfer function (MTF) above 0.25 at 77 lp/mm, a maximum distortion of 2%, and a maximum chief-ray angle of 2.3°. Microcrystalline glass and titanium alloy are adopted as the mirror substrate and structural materials, respectively. Finite-element thermal analysis is performed under a 6.8 °C temperature gradient, and the optical axis rotation, evaluated using the TRIAD algorithm, is −1.3″ around the
| [1] |
苏云, 葛婧菁, 王业超, 等. 航天高分辨率对地光学遥感载荷研究进展[J]. 中国光学, 2023, 16(2): 258-282. doi: 10.37188/CO.2022-0085
SU Y, GE J J, WANG Y CH, et al. Research progress on high-resolution imaging system for optical remote sensing in aerospace[J]. Chinese Optics, 2023, 16(2): 258-282. (in Chinese). doi: 10.37188/CO.2022-0085
|
| [2] |
李峰, 万秋华, 刘萌萌, 等. 低轨光学卫星同轨立体成像姿态规划与控制方法[J]. 光学 精密工程, 2022, 30(14): 1682-1693. doi: 10.37188/OPE.20223014.1682
LI F, WAN Q H, LIU M M, et al. Attitude planning and control method of low-orbit optical satellite along-track stereoscopic imaging[J]. Optics and Precision Engineering, 2022, 30(14): 1682-1693. (in Chinese). doi: 10.37188/OPE.20223014.1682
|
| [3] |
李恩泽, 潘宇, 顾国超, 等. 单一透镜材料宽温度范围空间相机无热化设计[J]. 中国光学(中英文), 2025, 18(6): 1388-1398.
LI E Z, PAN Y, GU G C, et al. Athermal design of a space camera using a single lens material over a wide temperature range[J]. Chinese Optics, 2025, 18(6): 1388-1398. (in Chinese).
|
| [4] |
SUN Y H, SUN Y Q, CHEN X, et al. Design of a free-form off-axis three-mirror optical system with a low f-number based on the same substrate[J]. Applied Optics, 2022, 61(24): 7033-7040. doi: 10.1364/AO.457646
|
| [5] |
姜洋, 穆全全, 赵东旭, 等. 轻巧型半主动激光制导光学系统设计[J]. 中国光学(中英文), 2025, 18(6): 1431-1438.
JIANG Y, MU Q Q, ZHAO D X, et al. Design of a lightweight semi-active laser guided optical system[J]. Chinese Optics, 2025, 18(6): 1431-1438. (in Chinese).
|
| [6] |
LIU J, WEI H, FAN H J. A novel method for finding the initial structure parameters of optical systems via a genetic algorithm[J]. Optics Communications, 2016, 361: 28-35. doi: 10.1016/j.optcom.2015.10.036
|
| [7] |
TAN W, JI H R, MO Y, et al. Automatic design of an extreme ultraviolet lithography objective system based on the Seidel aberration theory[J]. Applied Optics, 2022, 61(29): 8633-8640. doi: 10.1364/AO.467761
|
| [8] |
孟庆宇, 戚允升, 陈琪. 反射/折反射式变焦光学系统综述[J]. 光学 精密工程, 2025, 33(17): 2718-2733.
MENG Q Y, QI Y S CHEN Q. Review of reflective/catadioptric zoom optical systems[J]. Optics and Precision Engineering, 2025, 33(17): 2718-2733. (in Chinese).
|
| [9] |
王翘楚, 耿海涛, 虞林遥, 等. 红外双波段制冷型变焦Offner型光谱成像系统设计[J]. 中国光学(中英文), 2025, 18(6): 1327-1343.
WANG Q C, GENG H T, YU L Y, et al. Design of an infrared dual-band cooled zoom focal Offner-type spectral imaging optical system[J]. Chinese Optics, 2025, 18(6): 1327-1343. (in Chinese).
|
| [10] |
JIANG F, WANG L, DENG H X, et al. Thermal deformation analysis of a star camera to ensure its high attitude measurement accuracy in orbit[J]. Remote Sensing, 2024, 16(23): 4567. doi: 10.3390/rs16234567
|
| [11] |
宋俊儒, 童卫明, 金忠瑞, 等. 空间望远镜的设计仿真和低温波前测试[J]. 光学 精密工程, 2025, 33(6): 895-904. doi: 10.37188/OPE.20253306.0895
SONG J R, TONG W M, JIN ZH R, et al. Performance simulation and wavefront measurement of telescope at cryogenic temperature[J]. Optics and Precision Engineering, 2025, 33(6): 895-904. (in Chinese). doi: 10.37188/OPE.20253306.0895
|
| [12] |
徐义奇, 王硕, 严微, 等. 神舟飞船高精度星敏感器设计概述及在轨验证[J]. 航天控制, 2024, 42(5): 3-8.
XU Y Q, WANG SH, YAN W, et al. Design and validation of high precision star tracker on SZ spacecraft[J]. Aerospace Control, 2024, 42(5): 3-8. (in Chinese).
|
| [13] |
巩盾. 空间遥感测绘光学系统研究综述[J]. 中国光学, 2015, 8(5): 714-724. doi: 10.3788/co.20150805.0714
GONG D. Review on mapping space remote sensor optical system[J]. Chinese Optics, 2015, 8(5): 714-724. (in Chinese). doi: 10.3788/co.20150805.0714
|
| [14] |
REN ZH G, LI X Y, NI D W. Ultra-wide field multispectral integrated spatial optical system design[J]. Proceedings of SPIE, 2019, 11341: 113410L.
|
| [15] |
余苗, 李建聪, 林宏安, 等. 低灵敏度空间引力波望远镜光学系统设计[J]. 中国光学(中英文), 2023, 16(6): 1384-1393.
YU M, LI J C, LIN H A, et al. Design of optical system for low-sensitivity space gravitational wave telescope[J]. Chinese Optics, 2023, 16(6): 1384-1393. (in Chinese).
|
| [16] |
王江涛, 王虎, 马占鹏, 等. 基于受控遗传算法的离轴三反光学系统设计[J]. 光子学报, 2024, 53(12): 1222002. doi: 10.3788/gzxb20245312.1222002
WANG J T, WANG H, MA ZH P, et al. Design of off-axis three-mirror optical system based on controlled genetic algorithm[J]. Acta Photonica Sinica, 2024, 53(12): 1222002. (in Chinese). doi: 10.3788/gzxb20245312.1222002
|
| [17] |
CAO CH, LIAO SH, LIAO ZH Y, et al. Initial configuration design method for off-axis reflective optical systems using nodal aberration theory and genetic algorithm[J]. Optical Engineering, 2019, 58(10): 105101.
|
| [18] |
QU ZH, ZHONG X, ZHANG K, et al. Automatic initial configuration in off-axis reflective optical system design using combined nodal and Seidel aberration[J]. Applied Optics, 2022, 61(13): 3630-3640. doi: 10.1364/AO.457092
|
| [19] |
TIAN M L, XUE CH X. Design of a zoom head-up display optical system based on a nodal aberration theory[J]. Applied Optics, 2024, 63(18): 5006-5017. doi: 10.1364/AO.516685
|
| [20] |
王艳丽, 王密, 董志鹏, 等. 基于姿态误差时空补偿的高分五号02星全谱段影像定位精度提升方法[J]. 光学学报, 2024, 44(12): 1228004. doi: 10.3788/AOS231500
WANG Y L, WANG M, DONG ZH P, et al. Positioning accuracy improvement of GF-5B VIMS images based on attitude error spatiotemporal compensation[J]. Acta Optica Sinica, 2024, 44(12): 1228004. (in Chinese). doi: 10.3788/AOS231500
|
| [21] |
李德仁, 张过, 蒋永华, 等. 国产光学卫星影像几何精度研究[J]. 航天器工程, 2016, 25(1): 1-9.
LI D R, ZHANG G, JIANG Y H, et al. Research on image geometric precision of domestic optical satellites[J]. Spacecraft Engineering, 2016, 25(1): 1-9. (in Chinese).
|
| [22] |
翟国芳, 于庆盛, 王蕴龙, 等. 双线阵测绘相机视轴抖动实时测量[J]. 中国光学(中英文), 2023, 16(4): 878-888. doi: 10.37188/CO-2022-0175
ZHAI G F, YU Q SH, WANG Y L, et al. Real-time measurement for boresight vibration of dual line split surveying and mapping cameras[J]. Chinese Optics, 2023, 16(4): 878-888. (in Chinese). doi: 10.37188/CO-2022-0175
|
| [23] |
曲友阳, 钟兴, 戴路, 等. 光学遥感卫星精密敏捷成像控制技术综述[J]. 光学 精密工程, 2024, 32(5): 678-693. doi: 10.37188/OPE.20243205.0678
QU Y Y, ZHONG X, DAI L, et al. Review on precision and agile imaging control technology of optical remote sensing satellites[J]. Optics and Precision Engineering, 2024, 32(5): 678-693. (in Chinese). doi: 10.37188/OPE.20243205.0678
|
| [24] |
SHUSTER M D, OH S D. Three-axis attitude determination from vector observations[J]. Journal of Guidance, Control, and Dynamics, 1981, 4(1): 70-77. doi: 10.2514/3.19717
|