Turn off MathJax
Article Contents
FU Zong-tao, YANG Fan, WANG Shao-na, LI Kai, JIANG Yue, GUO Cui-juan, NIU Ping-juan, YAO Jian-quan, SHI Jia. Design and optimization of all-dielectric focusing metasurface antennas[J]. Chinese Optics. doi: 10.37188/CO.2025-0094
Citation: FU Zong-tao, YANG Fan, WANG Shao-na, LI Kai, JIANG Yue, GUO Cui-juan, NIU Ping-juan, YAO Jian-quan, SHI Jia. Design and optimization of all-dielectric focusing metasurface antennas[J]. Chinese Optics. doi: 10.37188/CO.2025-0094

Design and optimization of all-dielectric focusing metasurface antennas

cstr: 32171.14.CO.2025-0094
Funds:  Supported by the Natural Science Foundation of Tianjin City (No. 23JCYBJC00300, No. 24JCYBJC00050); Key Research and Development Program of Tianjin City (No. 23YFZCSN00090)
More Information
  • Corresponding author: yangffan@tiangong.edu.cn
  • Received Date: 12 Jul 2025
  • Rev Recd Date: 18 Aug 2025
  • Available Online: 11 Oct 2025
  • Limited by the diffraction limit, the spatial resolution of traditional microwave antennas is difficult to break through the constraint of the wavelength scale, which hinders their application in high-resolution microwave sensing and detection. In this paper, we design an all-dielectric integrated meta-antenna beyond the physical diffraction limit. Firstly, the meta-antenna is functionalized using asymmetric scattering metagrating array based on the generalized Snell's law. High-efficiency focusing beam in the sub-wavelength scale is obtained by manipulating the electromagnetic wavefront. Then, by optimizing the geometric structure of the metagrating to achieve high manipulation efficiency. Finally, the electric field intensity distribution of the generated focal spot is analyzed. The simulation results demonstrate that the manipulation and diffraction efficiencies of the metalens reach 98.50% and 72.56%. The metalens shows a focal spot with the diameter of 0.73λ and depth of focus (DOF) of 15.11λ. The designed meta-antennas possess the characteristics of long focal depth and high efficiency. Its sub-wavelength focusing property significantly enhances the spatial resolution, which provides a new method for high-precision sensing and detection in the fields such as microwave imaging and non-destructive testing, possessing potential application value.

     

  • loading
  • [1]
    LI S M, CUI ZH Z, YE X W, et al. Chip-based microwave-photonic radar for high-resolution imaging[J]. Laser & Photonics Reviews, 2020, 14(10): 1900239.
    [2]
    HAN-OH S, DING K, SONG D, et al. Feasibility study of fiducial marker localization using microwave radar[J]. Medical Physics, 2021, 48(11): 7271-7282. doi: 10.1002/mp.15197
    [3]
    MOHINDRU P. Development of liquid level measurement technology: a review[J]. Flow Measurement and Instrumentation, 2023, 89: 102295. doi: 10.1016/j.flowmeasinst.2022.102295
    [4]
    XIAO G L, CHEN J Y, YANG H Y, et al. Doublet metalens for polarization conversion as well as focusing[J]. Journal of Lightwave Technology, 2024, 42(6): 2076-2082. doi: 10.1109/JLT.2023.3331543
    [5]
    CHEN M K, WU Y F, FENG L, et al. Principles, functions, and applications of optical meta-lens[J]. Advanced Optical Materials, 2021, 9(4): 2001414. doi: 10.1002/adom.202001414
    [6]
    ZHANG P, FANG B, ZHAO T Q, et al. Terahertz wave tunable metalens based on phase change material coded metasurface[J]. Journal of Lightwave Technology, 2023, 41(23): 7162-7168. doi: 10.1109/JLT.2023.3262509
    [7]
    LIU Y Q, SUN J H, CHE Y X, et al. High numerical aperture microwave metalens[J]. Optics Letters, 2020, 45(22): 6262-6265. doi: 10.1364/OL.412040
    [8]
    WEN SH, XUE X Y, WANG SH, et al. Metasurface array for single-shot spectroscopic ellipsometry[J]. Light: Science & Applications, 2024, 13(1): 88.
    [9]
    吴广坤, 丁华峰, 陈建军. 金属微纳结构操控单光子发射体辐射[J]. 量子电子学报, 2024, 41(2): 185-193.

    WU G K, DING H F, CHEN J J. Tailoring single-photon emission with metallic nano-structures[J]. Chinese Journal of Quantum Electronics, 2024, 41(2): 185-193. (in Chinese).
    [10]
    ZHENG CH L, NI P N, XIE Y Y, et al. On-chip light control of semiconductor optoelectronic devices using integrated metasurfaces[J]. Opto-Electronic Advances, 2025, 8(1): 240159. doi: 10.29026/oea.2025.240159
    [11]
    周俊焯, 郝佳, 余晓畅, 等. 面向偏振成像的超构表面研究进展[J]. 中国光学(中英文), 2023, 16(5): 973-995. doi: 10.37188/CO.2022-0234

    ZHOU J ZH, HAO J, YU X CH, et al. Recent advances in metasurfaces for polarization imaging[J]. Chinese Optics, 2023, 16(5): 973-995. (in Chinese). doi: 10.37188/CO.2022-0234
    [12]
    HE X Y, ZHONG X, LIN F T, et al. Investigation of graphene assisted tunable terahertz metamaterials absorber[J]. Optical Materials Express, 2016, 6(2): 331-342. doi: 10.1364/OME.6.000331
    [13]
    FANG B, LI B Y, PENG Y D, et al. Polarization-independent multiband metamaterials absorber by fundamental cavity mode of multilayer microstructure[J]. Microwave and Optical Technology Letters, 2019, 61(10): 2385-2391. doi: 10.1002/mop.31890
    [14]
    倪赛健, 王晗, 王勇, 等. 金属-介质-金属三棱柱结构超表面中的磁电耦合[J]. 量子电子学报, 2019, 36(5): 532-538.

    NI S J, WANG H, WANG Y, et al. Magnetoelectric coupling in metal-dielectric-metal triangular prism structure metasurface[J]. Chinese Journal of Quantum Electronics, 2019, 36(5): 532-538. (in Chinese).
    [15]
    刘逸天, 陈琦凯, 唐志远, 等. 超表面透镜的像差分析和成像技术研究[J]. 中国光学, 2021, 14(4): 831-850. doi: 10.37188/CO.2021-0014

    LIU Y T, CHEN Q K, TANG ZH Y, et al. Research progress of aberration analysis and imaging technology based on metalens[J]. Chinese Optics, 2021, 14(4): 831-850. (in Chinese). doi: 10.37188/CO.2021-0014
    [16]
    ZHANG J H, ELKABBASH M, WEI R, et al. Plasmonic metasurfaces with 42.3% transmission efficiency in the visible[J]. Light: Science & Applications, 2019, 8: 53.
    [17]
    YANG J, YANG W X, QU K, et al. Active polarization-converting metasurface with electrically controlled magnitude amplification[J]. Optics Express, 2023, 31(18): 28979-28986. doi: 10.1364/OE.499458
    [18]
    HUANG P SH, CHU C H, HUANG S H, et al. Varifocal metalenses: harnessing polarization-dependent superposition for continuous focal length control[J]. Nano Letters, 2023, 23(22): 10432-10440. doi: 10.1021/acs.nanolett.3c03056
    [19]
    LIU Y Q, ZHU Y, YIN H CH, et al. Broadband high-efficiency plasmonic metalens with negative dispersion characteristic[J]. Photonics Research, 2024, 12(4): 813-820. doi: 10.1364/PRJ.513990
    [20]
    徐平, 李雄超, 肖钰斐, 等. 长红外双波长共聚焦超透镜设计研究[J]. 物理学报, 2023, 72(1): 014208. doi: 10.7498/aps.72.20221752

    XU P, LI X CH, XIAO Y F, et al. Design and research of long-infrared dual-wavelength confocal metalens[J]. Acta Physica Sinica, 2023, 72(1): 014208. (in Chinese). doi: 10.7498/aps.72.20221752
    [21]
    张振宇, 张伟, 刘睿, 等. 利用级联超构表面同时测量径向角位移和纵向线位移[J]. 中国光学(中英文), 2025, 18(5): 1016-1026.

    ZHANG Z Y, ZHANG W, LIU R, et al. Simultaneous measurement of radial angular displacement and longitudinal linear displacement with cascade metasurfaces[J]. Chinese Optics, 2025, 18(5): 1016-1026. (in Chinese).
    [22]
    黄昊华, 李玮, 刘睿, 等. 可见连续波段大视场消色差单片超构表面透镜[J]. 中国光学(中英文), 2025, 18(6): 1267-1276.

    HUANG H H, LI W, LIU R, et al. Achromatic monolayer metalens with elongated field of view in a continuous waveband[J]. Chinese Optics, 2025, 18(6): 1267-1276. (in Chinese).
    [23]
    CHEN ZH N, LI T, QING X M, et al. Microwave metalens antennas[J]. Proceedings of the IEEE, 2023, 111(8): 978-1010. doi: 10.1109/JPROC.2023.3287599
    [24]
    WU G B, DAI J Y, SHUM K M, et al. A universal metasurface antenna to manipulate all fundamental characteristics of electromagnetic waves[J]. Nature Communications, 2023, 14(1): 5155. doi: 10.1038/s41467-023-40717-9
    [25]
    LIU X CH, WANG X Y, WANG Y, et al. High-gain multiband metasurface antenna with frequency and polarization reconfigurability for millimeter-wave applications[J]. Optics Express, 2025, 33(6): 14221-14235. doi: 10.1364/OE.558906
    [26]
    YU N F, GENEVET P, KATS M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333-337. doi: 10.1126/science.1210713
    [27]
    LIU J M, FANG X, HE F, et al. Directional conversion of a THz propagating wave into surface waves in deformable metagratings[J]. Optics Express, 2021, 29(14): 21749-21762. doi: 10.1364/OE.431817
    [28]
    LIU Z H, LI X J, YIN J, et al. Asymmetric all silicon micro-antenna array for high angle beam bending in terahertz band[J]. IEEE Photonics Journal, 2019, 11(2): 5900509.
    [29]
    SHI J, GAO H, JIA X, et al. All-dielectric tunable terahertz metagrating for diffraction control[J]. ACS Applied Materials & Interfaces, 2022, 14(49): 55174-55182.
    [30]
    PANIAGUA-DOMÍNGUEZ R, YU Y F, KHAIDAROV E, et al. A metalens with a near-unity numerical aperture[J]. Nano Letters, 2018, 18(3): 2124-2132. doi: 10.1021/acs.nanolett.8b00368
    [31]
    LEGARIA S, TENIENTE J, KUZNETSOV S, et al. Highly efficient focusing of terahertz waves with an ultrathin superoscillatory metalens: experimental demonstration[J]. Advanced Photonics Research, 2021, 2(9): 2000165. doi: 10.1002/adpr.202000165
    [32]
    YANG M Y, SHEN X, LI Z P, et al. High focusing efficiency metalens with large numerical aperture at terahertz frequency[J]. Optics Letters, 2023, 48(17): 4677-4680. doi: 10.1364/OL.498397
    [33]
    JANG D, RYU H, MAENG I, et al. All-dielectric terahertz metalens using 3D-printing[J]. Optics and Lasers in Engineering, 2023, 171: 107834. doi: 10.1016/j.optlaseng.2023.107834
    [34]
    LI X J, LIU Z H, YAN D X, et al. Experimental demonstration of 3D printed terahertz polarization-insensitive flat devices based on low-index meta-gratings[J]. Journal of Physics D: Applied Physics, 2020, 53(50): 505301. doi: 10.1088/1361-6463/abb272
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article views(178) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return