留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超快光纤激光相干合成中的脉冲压缩技术

李灿 任博 张嘉怡 王涛 唐振强 贺志文 周毅 冷进勇 周朴

李灿, 任博, 张嘉怡, 王涛, 唐振强, 贺志文, 周毅, 冷进勇, 周朴. 超快光纤激光相干合成中的脉冲压缩技术[J]. 中国光学(中英文). doi: 10.37188/CO.2025-0100
引用本文: 李灿, 任博, 张嘉怡, 王涛, 唐振强, 贺志文, 周毅, 冷进勇, 周朴. 超快光纤激光相干合成中的脉冲压缩技术[J]. 中国光学(中英文). doi: 10.37188/CO.2025-0100
LI Can, REN Bo, ZHANG Jia-yi, WANG Tao, TANG Zhen-qiang, HE Zhi-wen, ZHOU Yi, LENG Jin-yong, ZHOU Pu. Pulse compression techniques in ultrafast fiber laser coherent beam combination[J]. Chinese Optics. doi: 10.37188/CO.2025-0100
Citation: LI Can, REN Bo, ZHANG Jia-yi, WANG Tao, TANG Zhen-qiang, HE Zhi-wen, ZHOU Yi, LENG Jin-yong, ZHOU Pu. Pulse compression techniques in ultrafast fiber laser coherent beam combination[J]. Chinese Optics. doi: 10.37188/CO.2025-0100

超快光纤激光相干合成中的脉冲压缩技术

cstr: 32171.14.CO.2025-0100
基金项目: 国家自然科学基金(No. 62475286,No. 62405374);国防科技大学引进高层次科技创新人才科研启动经费(ZZ-005);国防科技大学自主创新科学基金(JDZ-12、JDZ-27)
详细信息
    作者简介:

    李 灿(1987—),男,湖南益阳人,副研究员,2015年于华南理工大学获得工学博士学位,2015—2019年在香港大学从事博士后研究工作,主要从事超快光纤激光器、单频光纤激光器及相干合成的研究。E-mail:lc0616@163.com

    周 朴(1984—),男,安徽安庆人,研究员,2009年于国防科技大学获得工学博士学位,现主要从事科研管理工作和光学工程及相关学科的科研、人才培养、教学和战略研究工作。E-mail:zhoupu203@163.com

  • 中图分类号: TN248

Pulse compression techniques in ultrafast fiber laser coherent beam combination

Funds: Supported by National Natural Science Foundation of China (No. 62475286, No. 62405374)
More Information
  • 摘要:

    近年来,超快光纤激光相干合成技术得到快速发展,成为超快超强激光平均功率提升的重要技术手段。然而,受到单路光纤放大器中光谱增益窄化以及高阶色散失配等因素影响,高功率超快光纤激光相干合成系统的输出脉冲宽度与块状固体激光系统相比通常较宽,导致其峰值功率提升严重受限。本文从超快光纤激光相干合成中脉冲压缩的视角,分别针对基于光纤啁啾脉冲放大的脉冲整形技术、基于光纤非线性光谱展宽的合成技术、以及基于部分光谱干涉的相干光谱合成技术三个方面进行了系统的梳理分析,并对超短脉冲光纤激光相干合成的后续发展进行了展望。

     

  • 图 1  基于光谱预整形与高阶色散预补偿的掺镱光纤CPA系统[29]。oscillator:振荡器,preamp:预放大器,chirped FBG stretcher:啁啾光纤布拉格光栅展宽器,down-counter:降频器,Lyot filter:lyot滤波器,power amp:主放大器,compressor:压缩器,hollow core fiber:空芯光纤,pressure chamber:压力室。

    Figure 1.  The Yb-doped fiber CPA system based on spectral pre-shaping and high-order dispersion pre-compensation [29].

    图 2  多光子脉内干涉相位扫描结构示意图[31]。fs-laser:飞秒激光器,shaper:整形器,SHG:二次谐波产生,spectrometer:光谱仪。

    Figure 2.  Experimental setup of the MIIPS [31].

    图 3  基于光谱预整形与相位补偿的高功率超快光纤激光相干合成系统[34]。oscillator:振荡器,stretcher:展宽器,pulse shaper:脉冲整形器,preamp:预放大器,main amplifier 8 channel CBC:主放大器8路相干合成,compressor:压缩器,feedback stage:反馈系统,nonlinear compression:非线性压缩,HHG stage:高次谐波产生系统。

    Figure 3.  High-power ultrafast fiber laser coherent combining system based on spectral pre-shaping and phase compensation[34].

    图 4  种子源光谱预整形(a)前(b)后的合成输出光谱,图(b)中的橙色曲线为整形器的光谱透射函数[34]

    Figure 4.  Spectrum after the compressor with one activated amplifier channel (a) without and (b) with an activated gain flattening filter. The amplitude transmission function of the filter is shown in (b) in orange[34].

    图 5  基于超快激光非线性光纤放大的时空相干合成系统输出脉冲特性:左图为脉冲时域波形,其中插图为FROG轨迹;右图为相应的脉冲光谱[49]

    Figure 5.  Output pulse characteristics of spatio-temporal coherent combining system based on ultrafast laser nonlinear fiber amplification. Left: temporal pulse profile of the 3.1 µJ pulse retrieved from FROG measurement, along with the FROG trace (inset). Right: corresponding spectrum[49].

    图 6  基于多路光谱非线性展宽的超快光纤激光相干合成示意图[50]。Splitting:分束,Broad. N:N路光谱展宽,combination:合束,compressor:压缩器。

    Figure 6.  Schematic setup of coherent combination employing multiple broadening elements (Broad. 1-N) with a common compressor[50].

    图 7  基于3路光纤CPA相干光谱合成的输出脉冲特性:(a)单路及合成后光谱;(b)单路及合成后脉冲自相关曲线[66]

    Figure 7.  Output pulse characteristics based on 3-channel fiber CPA coherent spectroscopy combining. (a) Measured spectra of the individual-channel and combined signals;(b) normalized autocorrelation traces for theindividual-channel and combined signals. The dash line shows the calculated transform-limited autocorrelation of the combined spectrum in 6(a)[66].

    图 8  超快光纤激光时空与光谱多维相干合成结构示意图[70]。oscillator:振荡器,spectral splitter:光谱分束器,stretchers and pre-amplifiers:展宽器和预放大器,power amplifiers:功率放大器,spatial combiners:空间合束器,spectral combiners:光谱合束器,temporal stackers:时域堆叠器,pulse compressor:脉冲压缩器。

    Figure 8.  Experimental Setup of the ultrafast fiber lasers of spatio-temporal and spectral multi-dimensional coherent combining[70].

  • [1] 刘军, 曾志男, 梁晓燕, 等. 超快超强激光及其科学应用发展趋势研究[J]. 中国工程科学, 2020, 22(3): 42-48. doi: 10.15302/J-SSCAE-2020.03.007

    LIU J, ZENG ZH N, LIANG X Y, et al. Development trend of ultrafast and ultraintense lasers and their scientific application[J]. Strategic Study of CAE, 2020, 22(3): 42-48. (in Chinese). doi: 10.15302/J-SSCAE-2020.03.007
    [2] MOUROU G. Nobel Lecture: extreme light physics and application[J]. Reviews of Modern Physics, 2019, 91: 030501. doi: 10.1103/RevModPhys.91.030501
    [3] DANSON C N, HAEFNER C, BROMAGE J, et al. Petawatt and exawatt class lasers worldwide[J]. High Power Laser Science and Engineering, 2019, 7: e54. doi: 10.1017/hpl.2019.36
    [4] LI Y T, CHEN L M, CHEN M, et al. High-intensity lasers and research activities in China[J]. High Power Laser Science and Engineering, 2025, 13: e12. doi: 10.1017/hpl.2024.69
    [5] LI ZH Y, LENG Y X, LI R X. Further development of the short-pulse petawatt laser: trends, technologies, and bottlenecks[J]. Laser & Photonics Reviews, 2023, 17(3): 2300062. doi: 10.1002/lpor.202300062
    [6] MOSER M. Checking in with the brightest light initiative[EB/OL]. [2019-09-17]. https://www.optica-opn.org/home/newsroom/2019/september/checking_in_with_the_brightest_light_initiative. (查阅网上资料,未找到本条文献更新日期信息,请确认).
    [7] KLENKE A, MÜLLER M, STARK H, et al. Coherent beam combination of ultrafast fiber lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(5): 0902709.
    [8] 王井上, 张瑶, 王军利, 等. 飞秒光纤激光相干合成技术最新进展[J]. 物理学报, 2021, 70(3): 034206. doi: 10.7498/aps.70.20201683

    WANG J SH, ZHANG Y, WANG J L, et al. Recent progress of coherent combining technology in femtosecond fiber lasers[J]. Acta Physica Sinica, 2021, 70(3): 034206. (in Chinese). doi: 10.7498/aps.70.20201683
    [9] 李灿, 张嘉怡, 任博, 等. 超快超强激光与光纤激光相干合成技术的融合发展(特邀)[J]. 中国激光, 2024, 51(19): 1901006. doi: 10.3788/CJL240967

    LI C, ZHANG J Y, REN B, et al. Integrated development of ultrafast ultra‐intense laser technology with fiber laser coherent beam combination technology (invited)[J]. Chinese Journal of Lasers, 2024, 51(19): 1901006. (in Chinese). doi: 10.3788/CJL240967
    [10] TAJIMA T, BROCKLESBY W, MOUROU G. ICAN: the next laser powerhouse[J]. Optics and Photonics News, 2013, 24(5): 36-43. doi: 10.1364/opn.24.5.000036
    [11] EIDAM T, KIENEL M, KLENKE A, et al. Divided-pulse amplification for terawatt-class fiber lasers[J]. The European Physical Journal Special Topics, 2015, 224(13): 2567-2571. doi: 10.1140/epjst/e2015-02566-8
    [12] BREITKOPF S, EIDAM T, KLENKE A, et al. A concept for multiterawatt fibre lasers based on coherent pulse stacking in passive cavities[J]. Light: Science & Applications, 2014, 3(10): e211.
    [13] MÜLLER M, ALESHIRE C, KLENKE A, et al. 10.4 kW coherently combined ultrafast fiber laser[J]. Optics Letters, 2020, 45(11): 3083-3086. doi: 10.1364/OL.392843
    [14] STARK H, BENNER M, BULDT J, et al. Pulses of 32 mJ and 158 fs at 20-kHz repetition rate from a spatiotemporally combined fiber laser system[J]. Optics Letters, 2023, 48(11): 3007-3010. doi: 10.1364/OL.488617
    [15] YU H L, WANG X L, ZHANG H W, et al. Linearly-polarized fiber-integrated nonlinear CPA system for high-average-power femtosecond pulses generation at 1.06 μm[J]. Journal of Lightwave Technology, 2016, 34(18): 4271-4277. doi: 10.1109/JLT.2016.2597862
    [16] BROCKLESBY W S. Progress in high average power ultrafast lasers[J]. The European Physical Journal Special Topics, 2015, 224(13): 2529-2543. doi: 10.1140/epjst/e2015-02562-0
    [17] HÄDRICH S, KIENEL M, MÜLLER M, et al. Energetic sub-2-cycle laser with 216 W average power[J]. Optics Letters, 2016, 41(18): 4332-4335. doi: 10.1364/OL.41.004332
    [18] NAGY T, HÄDRICH S, SIMON P, et al. Generation of three-cycle multi-millijoule laser pulses at 318 W average power[J]. Optica, 2019, 6(11): 1423-1424. doi: 10.1364/OPTICA.6.001423
    [19] GREBING C, MÜLLER M, BULDT J, et al. Kilowatt-average-power compression of millijoule pulses in a gas-filled multi-pass cell[J]. Optics Letters, 2020, 45(22): 6250-6253. doi: 10.1364/OL.408998
    [20] WANG T, LI C, REN B, et al. High-power femtosecond laser generation from an all-fiber linearly polarized chirped pulse amplifier[J]. High Power Laser Science and Engineering, 2023, 11: e25. doi: 10.1017/hpl.2023.12
    [21] GAIDA C, GEBHARDT M, HEUERMANN T, et al. Ultrafast thulium fiber laser system emitting more than 1 kW of average power[J]. Optics Letters, 2018, 43(23): 5853-5856. doi: 10.1364/OL.43.005853
    [22] XIU H, FAN Y H, LIN W, et al. 1200-W all polarization-maintaining fiber GHz-femtosecond-pulse laser with good beam quality[J]. Optics Express, 2023, 31(25): 41940-41951. doi: 10.1364/OE.506631
    [23] 闫东钰, 刘博文, 宋寰宇, 等. 高功率光纤飞秒激光放大器的研究现状与发展趋势[J]. 中国激光, 2019, 46(5): 0508012. doi: 10.3788/CJL201946.0508012

    YAN D Y, LIU B W, SONG H Y, et al. Research status and development trend of high power femtosecond fiber laser amplifiers[J]. Chinese Journal of Lasers, 2019, 46(5): 0508012. (in Chinese). doi: 10.3788/CJL201946.0508012
    [24] WAN P, YANG L M, LIU J. All fiber-based Yb-doped high energy, high power femtosecond fiber lasers[J]. Optics Express, 2013, 21(24): 29854-29859. doi: 10.1364/OE.21.029854
    [25] PEDERSEN M E V, JOHANSEN M M, OLESEN A S, et al. 175 W average power from a single-core rod fiber-based chirped-pulse-amplification system[J]. Optics Letters, 2022, 47(19): 5172-5175. doi: 10.1364/OL.471631
    [26] REN B, LI C, WANG T, et al. Thulium-doped all-PM fiber chirped pulse amplifier delivering 314 W average power[J]. High Power Laser Science and Engineering, 2023, 11: e73. doi: 10.1017/hpl.2023.68
    [27] MALEKMOHAMADI S, PERGAMENT M, KULCSAR G, et al. 44-fs, 1-MHz, 70-µJ Yb-doped fiber laser system for high harmonic generation[J]. Optics Express, 2024, 32(22): 39460-39468. doi: 10.1364/OE.538748
    [28] ČERNE L, ŠUŠNJAR P, PETKOVŠEK R. Compensation of optical nonlinearities in a femtosecond laser system in a broad operation regime[J]. Optics & Laser Technology, 2021, 135: 106706. doi: 10.1016/j.optlastec.2020.106706
    [29] LAMPEN J, TANI F, LI P, et al. Compact Yb fiber few-cycle pulse source based on precision pulse compression and shaping with an adaptive fiber Bragg grating[J]. Optics Express, 2023, 31(5): 8393-8399. doi: 10.1364/OE.483277
    [30] KLENKE A, BREITKOPF S, KIENEL M, et al. 530 W, 1.3 mJ, four-channel coherently combined femtosecond fiber chirped-pulse amplification system[J]. Optics Letters, 2013, 38(13): 2283-2285. doi: 10.1364/OL.38.002283
    [31] LOZOVOY V, PASTIRK I, DANTUS M. Multiphoton intrapulse interference. IV. Ultrashort laser pulse spectral phase characterization and compensation[J]. Optics Letters, 2004, 29(7): 775-777. doi: 10.1364/OL.29.000775
    [32] KLENKE A, HÄDRICH S, EIDAM T, et al. 22 GW peak-power fiber chirped-pulse-amplification system[J]. Optics Letters, 2014, 39(24): 6875-6878. doi: 10.1364/OL.39.006875
    [33] KIENEL M, MÜLLER M, KLENKE A, et al. 12 mJ kW-class ultrafast fiber laser system using multidimensional coherent pulse addition[J]. Optics Letters, 2016, 41(14): 3343-3346. doi: 10.1364/OL.41.003343
    [34] BECKER N C, HÄDRICH S, EIDAM T, et al. Adaptive pre-amplification pulse shaping in a high-power, coherently combined fiber laser system[J]. Optics Letters, 2017, 42(19): 3916-3919. doi: 10.1364/OL.42.003916
    [35] MÜLLER M, KLENKE A, STEINKOPFF A, et al. 3.5 kW coherently combined ultrafast fiber laser[J]. Optics Letters, 2018, 43(24): 6037-6040. doi: 10.1364/OL.43.006037
    [36] STARK H, BULDT J, MÜLLER M, et al. 23 mJ high-power fiber CPA system using electro-optically controlled divided-pulse amplification[J]. Optics Letters, 2019, 44(22): 5529-5532. doi: 10.1364/OL.44.005529
    [37] STARK H, BULDT J, MÜLLER M, et al. 1 kW, 10 mJ, 120 fs coherently combined fiber CPA laser system[J]. Optics Letters, 2021, 46(5): 969-972.
    [38] HEILMANN A, LE DORTZ J, DANIAULT L, et al. Coherent beam combining of seven fiber chirped-pulse amplifiers using an interferometric phase measurement[J]. Optics Express, 2018, 26(24): 31542-31553. doi: 10.1364/OE.26.031542
    [39] FSAIFES I, DANIAULT L, BELLANGER S, et al. Coherent beam combining of 61 femtosecond fiber amplifiers[J]. Optics Express, 2020, 28(14): 20152-20161. doi: 10.1364/OE.394031
    [40] 史卓, 常洪祥, 王栋梁, 等. 基于掺镱棒状光纤的高功率大能量四路相干合成飞秒激光系统[J]. 物理学报, 2025, 74(1): 014205. doi: 10.7498/aps.74.20241476

    SHI ZH, CHANG H X, WANG D L, et al. High-power high-energy four-channel fiber coherent beam combined system[J]. Acta Physica Sinica, 2025, 74(1): 014205. (in Chinese). doi: 10.7498/aps.74.20241476
    [41] PENG SH X, WANG ZH H, HU F L, et al. 260 fs, 403 W coherently combined fiber laser with precise high-order dispersion management[J]. Frontiers of Optoelectronics, 2024, 17(1): 3. doi: 10.1007/s12200-024-00107-5
    [42] 王鸣晓, 李平雪, 许杨涛, 等. 啁啾光纤布拉格光栅展宽器的设计与制作[J]. 光学学报, 2022, 42(7): 0706002. doi: 10.3788/AOS202242.0706002

    WANG M X, LI P X, XU Y T, et al. Design and fabrication of chirped fiber Bragg grating stretchers[J]. Acta Optica Sinica, 2022, 42(7): 0706002. (in Chinese). doi: 10.3788/AOS202242.0706002
    [43] FRANKINAS S, MICHAILOVAS A, RUSTEIKA N, et al. Efficient ultrafast fiber laser using chirped fiber Bragg grating and chirped volume Bragg grating stretcher/compressor configuration[J]. Proceedings of SPIE, 2016, 9730: 973017. doi: 10.1117/12.2214720
    [44] KUZNETSOVA L, WISE F W. Scaling of femtosecond Yb-doped fiber amplifiers to tens of microjoule pulse energy via nonlinear chirped pulse amplification[J]. Optics Letters, 2007, 32(18): 2671-2673. doi: 10.1364/ol.32.002671
    [45] WISE F W, CHONG A, RENNINGER W H. High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion[J]. Laser & Photonics Reviews, 2008, 2(1-2): 58-73. doi: 10.1002/lpor.200710041
    [46] LIU Y, LI W X, LUO D P, et al. Generation of 33 fs 93.5 W average power pulses from a third-order dispersion managed self-similar fiber amplifier[J]. Optics Express, 2016, 24(10): 10939-10945. doi: 10.1364/OE.24.010939
    [47] ZHANG Y, WANG J SH, TENG H, et al. Double-pass pre-chirp managed amplification with high gain and high average power[J]. Optics Letters, 2021, 46(13): 3115-3118. doi: 10.1364/OL.428066
    [48] 李灿, 任博, 郭琨, 等. 基于增益管理非线性的超快光纤激光放大研究进展(特邀)[J]. 红外与激光工程, 2025, 54(1): 20240438.

    LI C, REN B, GUO K, et al. Research progress of ultrafast fiber laser amplifier based on gain managed nonlinearity (invited)[J]. Infrared and Laser Engineering, 2025, 54(1): 20240438. (in Chinese).
    [49] DANIAULT L, HANNA M, PAPADOPOULOS D N, et al. High peak-power stretcher-free femtosecond fiber amplifier using passive spatio-temporal coherent combining[J]. Optics Express, 2012, 20(19): 21627-21634. doi: 10.1364/OE.20.021627
    [50] KLENKE A, HÄDRICH S, KIENEL M, et al. Coherent combination of spectrally broadened femtosecond pulses for nonlinear compression[J]. Optics Letters, 2014, 39(12): 3520-3522. doi: 10.1364/OL.39.003520
    [51] GUO K, LI C, JIN K, et al. Monolithic gain-managed nonlinear fiber amplifier delivering 2.7-μJ ultrashort pulse with broad spectrum seeding[J]. Optics & Laser Technology, 2025, 192: 113610. doi: 10.1016/j.optlastec.2025.113610
    [52] ZHANG P L, ZHAO H, XIA T, et al. Generation of an 86-fs and a 10.2-uJ pulse from an all-fiber integrated GMN system with spectral shaping[J]. Optics Letters, 2025, 50(10): 3293-3296. doi: 10.1364/OL.554087
    [53] PENG CH, LIANG X Y, LIU R Q, et al. Two-beam coherent combining based on Ti: sapphire chirped-pulse amplification at the repetition of 1 Hz[J]. Optics Letters, 2019, 44(17): 4379-4382. doi: 10.1364/OL.44.004379
    [54] JANSONAS G, ERDMAN E C, NOVÁK J, et al. Coherent combining of broadband pulses after free space optical parametric amplification[J]. Optics Express, 2024, 32(22): 39623-39631. doi: 10.1364/OE.531920
    [55] ZHANG G L, LIANG X, XIE X L, et al. Theoretical analysis of the phase characteristics in few-cycle laser coherent beam combining[J]. Optics Express, 2024, 32(25): 45299-45314. doi: 10.1364/OE.543676
    [56] LUREAU F, MATRAS G, CHALUS O, et al. High-energy hybrid femtosecond laser system demonstrating 2 × 10 PW capability[J]. High Power Laser Science and Engineering, 2020, 8: e43. doi: 10.1017/hpl.2020.41
    [57] KHAZANOV E, SHAYKIN A, KOSTYUKOV I, et al. eXawatt center for extreme light studies[J]. High Power Laser Science and Engineering, 2023, 11: e78. doi: 10.1017/hpl.2023.69
    [58] ZHOU T, RUPPE J, ZHU CH, et al. Coherent pulse stacking amplification using low-finesse Gires-Tournois interferometers[J]. Optics Express, 2015, 23(6): 7442-7462. doi: 10.1364/OE.23.007442
    [59] BREITKOPF S, WUNDERLICH S, EIDAM T, et al. Extraction of enhanced, ultrashort laser pulses from a passive 10-MHz stack-and-dump cavity[J]. Applied Physics B, 2016, 122(12): 297. doi: 10.1007/s00340-016-6574-x
    [60] 张志刚. 相干脉冲堆积——超越啁啾脉冲放大的新技术[J]. 激光与光电子学进展, 2017, 54(12): 120001. doi: 10.3788/LOP54.120001

    ZHANG ZH G. Coherent pulse stacking—an innovation beyond the chirped pulse amplification[J]. Laser & Optoelectronics Progress, 2017, 54(12): 120001. (in Chinese). doi: 10.3788/LOP54.120001
    [61] RAINVILLE A, WHITTLESEY M, PASQUALE C, et al. Near-complete extraction of maximum stored energy from large-core fibers using coherent pulse stacking amplification of femtosecond pulses[J]. Optica, 2024, 11(11): 1540-1548. doi: 10.1364/OPTICA.533803
    [62] SIDORENKO P, FU W, WISE F. Nonlinear ultrafast fiber amplifiers beyond the gain-narrowing limit[J]. Optica, 2019, 6(10): 1328-1333. doi: 10.1364/OPTICA.6.001328
    [63] SIDORENKO P, WISE F. Generation of 1 μJ and 40 fs pulses from a large mode area gain-managed nonlinear amplifier[J]. Optics Letters, 2020, 45(14): 4084-4087. doi: 10.1364/OL.396683
    [64] REN B, LI C, WANG T, et al. Generation of ultrafast laser with 11 MW peak power from a gain-managed nonlinear tapered fiber amplifier[J]. Optics & Laser Technology, 2023, 160: 109081. doi: 10.1016/j.optlastec.2022.109081
    [65] MA J D, LIU H H, CHEN Y J, et al. Generation of 35 fs, 20 μJ, GHz pulse burst by hybrid fiber amplification technique[J]. Optics Express, 2023, 31(21): 34224-34231. doi: 10.1364/OE.503079
    [66] CHANG W Z, ZHOU T, SIIMAN L A, et al. Femtosecond pulse spectral synthesis in coherently-spectrally combined multi-channel fiber chirped pulse amplifiers[J]. Optics Express, 2013, 21(3): 3897-3910. doi: 10.1364/OE.21.003897
    [67] GUICHARD F, HANNA M, LOMBARD L, et al. Two-channel pulse synthesis to overcome gain narrowing in femtosecond fiber amplifiers[J]. Optics Letters, 2013, 38(24): 5430-5433. doi: 10.1364/OL.38.005430
    [68] GE A CH, LIU B W, CHEN W, et al. Generation of few-cycle laser pulses by coherent synthesis based on a femtosecond Yb-doped fiber laser amplification system[J]. Chinese Optics Letters, 2019, 17(4): 041403. doi: 10.3788/COL201917.041403
    [69] CHEN S Y, ZHOU T, DU Q, et al. Broadband spectral combining of three pulse-shaped fiber amplifiers with 42fs compressed pulse duration[J]. Optics Express, 2023, 31(8): 12717-12724. doi: 10.1364/OE.486884
    [70] SCHULZ W. Fiber lasers poised to advance berkeley lab’s development of practical laser-plasma accelerators[EB/OL]. (2021-12-06)[2021-12-06]. https://newscenter.lbl.gov/2021/12/06/fiber-lasers-poised-to-advance-berkeley-labs-development-of-practical-laser-plasma-accelerators/.
    [71] WILLIAMS C A. Spectrally combining lasers could unleash the potential of laser-plasma accelerators[EB/OL]. (2023-06-27)[2023-06-27]. https://atap.lbl.gov/news/spectrally-combining-lasers-could-unleash-the-potential-of-laser-plasma-accelerators/.
  • 加载中
图(8)
计量
  • 文章访问数:  7
  • HTML全文浏览量:  3
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 网络出版日期:  2026-01-20

目录

    /

    返回文章
    返回