-
摘要:
近年来,超快光纤激光相干合成技术得到快速发展,成为超快超强激光平均功率提升的重要技术手段。然而,受到单路光纤放大器中光谱增益窄化以及高阶色散失配等因素影响,高功率超快光纤激光相干合成系统的输出脉冲宽度与块状固体激光系统相比通常较宽,导致其峰值功率提升严重受限。本文从超快光纤激光相干合成中脉冲压缩的视角,分别针对基于光纤啁啾脉冲放大的脉冲整形技术、基于光纤非线性光谱展宽的合成技术、以及基于部分光谱干涉的相干光谱合成技术三个方面进行了系统的梳理分析,并对超短脉冲光纤激光相干合成的后续发展进行了展望。
Abstract:In recent years, ultrafast fiber laser coherent beam combination (CBC) has developed rapidly, becoming an important technical means for enhancing the average power of ultrafast and ultra-intense lasers. However, due to factors such as spectral gain narrowing in single-channel fiber amplifiers and high-order dispersion mismatch, the output pulse width of high-power ultrafast fiber laser CBC systems is significantly wider compared to that of bulk solid-state laser systems, severely limiting its peak power enhancement. From the perspective of pulse compression in ultrafast fiber laser coherent combining, this review systematically analyzes the following three aspects: pulse shaping technique based on fiber chirped pulse amplification, combining technique based on fiber nonlinear spectral broadening, and coherent spectral combining technique based on partial spectral interference. Additionally, a brief conclusion and outlook on the future development of ultra-short pulse fiber laser CBC is given at the end.
-
图 1 基于光谱预整形与高阶色散预补偿的掺镱光纤CPA系统[29]。oscillator:振荡器,preamp:预放大器,chirped FBG stretcher:啁啾光纤布拉格光栅展宽器,down-counter:降频器,Lyot filter:lyot滤波器,power amp:主放大器,compressor:压缩器,hollow core fiber:空芯光纤,pressure chamber:压力室。
Figure 1. The Yb-doped fiber CPA system based on spectral pre-shaping and high-order dispersion pre-compensation [29].
图 3 基于光谱预整形与相位补偿的高功率超快光纤激光相干合成系统[34]。oscillator:振荡器,stretcher:展宽器,pulse shaper:脉冲整形器,preamp:预放大器,main amplifier 8 channel CBC:主放大器8路相干合成,compressor:压缩器,feedback stage:反馈系统,nonlinear compression:非线性压缩,HHG stage:高次谐波产生系统。
Figure 3. High-power ultrafast fiber laser coherent combining system based on spectral pre-shaping and phase compensation[34].
图 5 基于超快激光非线性光纤放大的时空相干合成系统输出脉冲特性:左图为脉冲时域波形,其中插图为FROG轨迹;右图为相应的脉冲光谱[49]。
Figure 5. Output pulse characteristics of spatio-temporal coherent combining system based on ultrafast laser nonlinear fiber amplification. Left: temporal pulse profile of the 3.1 µJ pulse retrieved from FROG measurement, along with the FROG trace (inset). Right: corresponding spectrum[49].
图 7 基于3路光纤CPA相干光谱合成的输出脉冲特性:(a)单路及合成后光谱;(b)单路及合成后脉冲自相关曲线[66]。
Figure 7. Output pulse characteristics based on 3-channel fiber CPA coherent spectroscopy combining. (a) Measured spectra of the individual-channel and combined signals;(b) normalized autocorrelation traces for theindividual-channel and combined signals. The dash line shows the calculated transform-limited autocorrelation of the combined spectrum in 6(a)[66].
图 8 超快光纤激光时空与光谱多维相干合成结构示意图[70]。oscillator:振荡器,spectral splitter:光谱分束器,stretchers and pre-amplifiers:展宽器和预放大器,power amplifiers:功率放大器,spatial combiners:空间合束器,spectral combiners:光谱合束器,temporal stackers:时域堆叠器,pulse compressor:脉冲压缩器。
Figure 8. Experimental Setup of the ultrafast fiber lasers of spatio-temporal and spectral multi-dimensional coherent combining[70].
-
[1] 刘军, 曾志男, 梁晓燕, 等. 超快超强激光及其科学应用发展趋势研究[J]. 中国工程科学, 2020, 22(3): 42-48. doi: 10.15302/J-SSCAE-2020.03.007LIU J, ZENG ZH N, LIANG X Y, et al. Development trend of ultrafast and ultraintense lasers and their scientific application[J]. Strategic Study of CAE, 2020, 22(3): 42-48. (in Chinese). doi: 10.15302/J-SSCAE-2020.03.007 [2] MOUROU G. Nobel Lecture: extreme light physics and application[J]. Reviews of Modern Physics, 2019, 91: 030501. doi: 10.1103/RevModPhys.91.030501 [3] DANSON C N, HAEFNER C, BROMAGE J, et al. Petawatt and exawatt class lasers worldwide[J]. High Power Laser Science and Engineering, 2019, 7: e54. doi: 10.1017/hpl.2019.36 [4] LI Y T, CHEN L M, CHEN M, et al. High-intensity lasers and research activities in China[J]. High Power Laser Science and Engineering, 2025, 13: e12. doi: 10.1017/hpl.2024.69 [5] LI ZH Y, LENG Y X, LI R X. Further development of the short-pulse petawatt laser: trends, technologies, and bottlenecks[J]. Laser & Photonics Reviews, 2023, 17(3): 2300062. doi: 10.1002/lpor.202300062 [6] MOSER M. Checking in with the brightest light initiative[EB/OL]. [2019-09-17]. https://www.optica-opn.org/home/newsroom/2019/september/checking_in_with_the_brightest_light_initiative. (查阅网上资料,未找到本条文献更新日期信息,请确认). [7] KLENKE A, MÜLLER M, STARK H, et al. Coherent beam combination of ultrafast fiber lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(5): 0902709. [8] 王井上, 张瑶, 王军利, 等. 飞秒光纤激光相干合成技术最新进展[J]. 物理学报, 2021, 70(3): 034206. doi: 10.7498/aps.70.20201683WANG J SH, ZHANG Y, WANG J L, et al. Recent progress of coherent combining technology in femtosecond fiber lasers[J]. Acta Physica Sinica, 2021, 70(3): 034206. (in Chinese). doi: 10.7498/aps.70.20201683 [9] 李灿, 张嘉怡, 任博, 等. 超快超强激光与光纤激光相干合成技术的融合发展(特邀)[J]. 中国激光, 2024, 51(19): 1901006. doi: 10.3788/CJL240967LI C, ZHANG J Y, REN B, et al. Integrated development of ultrafast ultra‐intense laser technology with fiber laser coherent beam combination technology (invited)[J]. Chinese Journal of Lasers, 2024, 51(19): 1901006. (in Chinese). doi: 10.3788/CJL240967 [10] TAJIMA T, BROCKLESBY W, MOUROU G. ICAN: the next laser powerhouse[J]. Optics and Photonics News, 2013, 24(5): 36-43. doi: 10.1364/opn.24.5.000036 [11] EIDAM T, KIENEL M, KLENKE A, et al. Divided-pulse amplification for terawatt-class fiber lasers[J]. The European Physical Journal Special Topics, 2015, 224(13): 2567-2571. doi: 10.1140/epjst/e2015-02566-8 [12] BREITKOPF S, EIDAM T, KLENKE A, et al. A concept for multiterawatt fibre lasers based on coherent pulse stacking in passive cavities[J]. Light: Science & Applications, 2014, 3(10): e211. [13] MÜLLER M, ALESHIRE C, KLENKE A, et al. 10.4 kW coherently combined ultrafast fiber laser[J]. Optics Letters, 2020, 45(11): 3083-3086. doi: 10.1364/OL.392843 [14] STARK H, BENNER M, BULDT J, et al. Pulses of 32 mJ and 158 fs at 20-kHz repetition rate from a spatiotemporally combined fiber laser system[J]. Optics Letters, 2023, 48(11): 3007-3010. doi: 10.1364/OL.488617 [15] YU H L, WANG X L, ZHANG H W, et al. Linearly-polarized fiber-integrated nonlinear CPA system for high-average-power femtosecond pulses generation at 1.06 μm[J]. Journal of Lightwave Technology, 2016, 34(18): 4271-4277. doi: 10.1109/JLT.2016.2597862 [16] BROCKLESBY W S. Progress in high average power ultrafast lasers[J]. The European Physical Journal Special Topics, 2015, 224(13): 2529-2543. doi: 10.1140/epjst/e2015-02562-0 [17] HÄDRICH S, KIENEL M, MÜLLER M, et al. Energetic sub-2-cycle laser with 216 W average power[J]. Optics Letters, 2016, 41(18): 4332-4335. doi: 10.1364/OL.41.004332 [18] NAGY T, HÄDRICH S, SIMON P, et al. Generation of three-cycle multi-millijoule laser pulses at 318 W average power[J]. Optica, 2019, 6(11): 1423-1424. doi: 10.1364/OPTICA.6.001423 [19] GREBING C, MÜLLER M, BULDT J, et al. Kilowatt-average-power compression of millijoule pulses in a gas-filled multi-pass cell[J]. Optics Letters, 2020, 45(22): 6250-6253. doi: 10.1364/OL.408998 [20] WANG T, LI C, REN B, et al. High-power femtosecond laser generation from an all-fiber linearly polarized chirped pulse amplifier[J]. High Power Laser Science and Engineering, 2023, 11: e25. doi: 10.1017/hpl.2023.12 [21] GAIDA C, GEBHARDT M, HEUERMANN T, et al. Ultrafast thulium fiber laser system emitting more than 1 kW of average power[J]. Optics Letters, 2018, 43(23): 5853-5856. doi: 10.1364/OL.43.005853 [22] XIU H, FAN Y H, LIN W, et al. 1200-W all polarization-maintaining fiber GHz-femtosecond-pulse laser with good beam quality[J]. Optics Express, 2023, 31(25): 41940-41951. doi: 10.1364/OE.506631 [23] 闫东钰, 刘博文, 宋寰宇, 等. 高功率光纤飞秒激光放大器的研究现状与发展趋势[J]. 中国激光, 2019, 46(5): 0508012. doi: 10.3788/CJL201946.0508012YAN D Y, LIU B W, SONG H Y, et al. Research status and development trend of high power femtosecond fiber laser amplifiers[J]. Chinese Journal of Lasers, 2019, 46(5): 0508012. (in Chinese). doi: 10.3788/CJL201946.0508012 [24] WAN P, YANG L M, LIU J. All fiber-based Yb-doped high energy, high power femtosecond fiber lasers[J]. Optics Express, 2013, 21(24): 29854-29859. doi: 10.1364/OE.21.029854 [25] PEDERSEN M E V, JOHANSEN M M, OLESEN A S, et al. 175 W average power from a single-core rod fiber-based chirped-pulse-amplification system[J]. Optics Letters, 2022, 47(19): 5172-5175. doi: 10.1364/OL.471631 [26] REN B, LI C, WANG T, et al. Thulium-doped all-PM fiber chirped pulse amplifier delivering 314 W average power[J]. High Power Laser Science and Engineering, 2023, 11: e73. doi: 10.1017/hpl.2023.68 [27] MALEKMOHAMADI S, PERGAMENT M, KULCSAR G, et al. 44-fs, 1-MHz, 70-µJ Yb-doped fiber laser system for high harmonic generation[J]. Optics Express, 2024, 32(22): 39460-39468. doi: 10.1364/OE.538748 [28] ČERNE L, ŠUŠNJAR P, PETKOVŠEK R. Compensation of optical nonlinearities in a femtosecond laser system in a broad operation regime[J]. Optics & Laser Technology, 2021, 135: 106706. doi: 10.1016/j.optlastec.2020.106706 [29] LAMPEN J, TANI F, LI P, et al. Compact Yb fiber few-cycle pulse source based on precision pulse compression and shaping with an adaptive fiber Bragg grating[J]. Optics Express, 2023, 31(5): 8393-8399. doi: 10.1364/OE.483277 [30] KLENKE A, BREITKOPF S, KIENEL M, et al. 530 W, 1.3 mJ, four-channel coherently combined femtosecond fiber chirped-pulse amplification system[J]. Optics Letters, 2013, 38(13): 2283-2285. doi: 10.1364/OL.38.002283 [31] LOZOVOY V, PASTIRK I, DANTUS M. Multiphoton intrapulse interference. IV. Ultrashort laser pulse spectral phase characterization and compensation[J]. Optics Letters, 2004, 29(7): 775-777. doi: 10.1364/OL.29.000775 [32] KLENKE A, HÄDRICH S, EIDAM T, et al. 22 GW peak-power fiber chirped-pulse-amplification system[J]. Optics Letters, 2014, 39(24): 6875-6878. doi: 10.1364/OL.39.006875 [33] KIENEL M, MÜLLER M, KLENKE A, et al. 12 mJ kW-class ultrafast fiber laser system using multidimensional coherent pulse addition[J]. Optics Letters, 2016, 41(14): 3343-3346. doi: 10.1364/OL.41.003343 [34] BECKER N C, HÄDRICH S, EIDAM T, et al. Adaptive pre-amplification pulse shaping in a high-power, coherently combined fiber laser system[J]. Optics Letters, 2017, 42(19): 3916-3919. doi: 10.1364/OL.42.003916 [35] MÜLLER M, KLENKE A, STEINKOPFF A, et al. 3.5 kW coherently combined ultrafast fiber laser[J]. Optics Letters, 2018, 43(24): 6037-6040. doi: 10.1364/OL.43.006037 [36] STARK H, BULDT J, MÜLLER M, et al. 23 mJ high-power fiber CPA system using electro-optically controlled divided-pulse amplification[J]. Optics Letters, 2019, 44(22): 5529-5532. doi: 10.1364/OL.44.005529 [37] STARK H, BULDT J, MÜLLER M, et al. 1 kW, 10 mJ, 120 fs coherently combined fiber CPA laser system[J]. Optics Letters, 2021, 46(5): 969-972. [38] HEILMANN A, LE DORTZ J, DANIAULT L, et al. Coherent beam combining of seven fiber chirped-pulse amplifiers using an interferometric phase measurement[J]. Optics Express, 2018, 26(24): 31542-31553. doi: 10.1364/OE.26.031542 [39] FSAIFES I, DANIAULT L, BELLANGER S, et al. Coherent beam combining of 61 femtosecond fiber amplifiers[J]. Optics Express, 2020, 28(14): 20152-20161. doi: 10.1364/OE.394031 [40] 史卓, 常洪祥, 王栋梁, 等. 基于掺镱棒状光纤的高功率大能量四路相干合成飞秒激光系统[J]. 物理学报, 2025, 74(1): 014205. doi: 10.7498/aps.74.20241476SHI ZH, CHANG H X, WANG D L, et al. High-power high-energy four-channel fiber coherent beam combined system[J]. Acta Physica Sinica, 2025, 74(1): 014205. (in Chinese). doi: 10.7498/aps.74.20241476 [41] PENG SH X, WANG ZH H, HU F L, et al. 260 fs, 403 W coherently combined fiber laser with precise high-order dispersion management[J]. Frontiers of Optoelectronics, 2024, 17(1): 3. doi: 10.1007/s12200-024-00107-5 [42] 王鸣晓, 李平雪, 许杨涛, 等. 啁啾光纤布拉格光栅展宽器的设计与制作[J]. 光学学报, 2022, 42(7): 0706002. doi: 10.3788/AOS202242.0706002WANG M X, LI P X, XU Y T, et al. Design and fabrication of chirped fiber Bragg grating stretchers[J]. Acta Optica Sinica, 2022, 42(7): 0706002. (in Chinese). doi: 10.3788/AOS202242.0706002 [43] FRANKINAS S, MICHAILOVAS A, RUSTEIKA N, et al. Efficient ultrafast fiber laser using chirped fiber Bragg grating and chirped volume Bragg grating stretcher/compressor configuration[J]. Proceedings of SPIE, 2016, 9730: 973017. doi: 10.1117/12.2214720 [44] KUZNETSOVA L, WISE F W. Scaling of femtosecond Yb-doped fiber amplifiers to tens of microjoule pulse energy via nonlinear chirped pulse amplification[J]. Optics Letters, 2007, 32(18): 2671-2673. doi: 10.1364/ol.32.002671 [45] WISE F W, CHONG A, RENNINGER W H. High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion[J]. Laser & Photonics Reviews, 2008, 2(1-2): 58-73. doi: 10.1002/lpor.200710041 [46] LIU Y, LI W X, LUO D P, et al. Generation of 33 fs 93.5 W average power pulses from a third-order dispersion managed self-similar fiber amplifier[J]. Optics Express, 2016, 24(10): 10939-10945. doi: 10.1364/OE.24.010939 [47] ZHANG Y, WANG J SH, TENG H, et al. Double-pass pre-chirp managed amplification with high gain and high average power[J]. Optics Letters, 2021, 46(13): 3115-3118. doi: 10.1364/OL.428066 [48] 李灿, 任博, 郭琨, 等. 基于增益管理非线性的超快光纤激光放大研究进展(特邀)[J]. 红外与激光工程, 2025, 54(1): 20240438.LI C, REN B, GUO K, et al. Research progress of ultrafast fiber laser amplifier based on gain managed nonlinearity (invited)[J]. Infrared and Laser Engineering, 2025, 54(1): 20240438. (in Chinese). [49] DANIAULT L, HANNA M, PAPADOPOULOS D N, et al. High peak-power stretcher-free femtosecond fiber amplifier using passive spatio-temporal coherent combining[J]. Optics Express, 2012, 20(19): 21627-21634. doi: 10.1364/OE.20.021627 [50] KLENKE A, HÄDRICH S, KIENEL M, et al. Coherent combination of spectrally broadened femtosecond pulses for nonlinear compression[J]. Optics Letters, 2014, 39(12): 3520-3522. doi: 10.1364/OL.39.003520 [51] GUO K, LI C, JIN K, et al. Monolithic gain-managed nonlinear fiber amplifier delivering 2.7-μJ ultrashort pulse with broad spectrum seeding[J]. Optics & Laser Technology, 2025, 192: 113610. doi: 10.1016/j.optlastec.2025.113610 [52] ZHANG P L, ZHAO H, XIA T, et al. Generation of an 86-fs and a 10.2-uJ pulse from an all-fiber integrated GMN system with spectral shaping[J]. Optics Letters, 2025, 50(10): 3293-3296. doi: 10.1364/OL.554087 [53] PENG CH, LIANG X Y, LIU R Q, et al. Two-beam coherent combining based on Ti: sapphire chirped-pulse amplification at the repetition of 1 Hz[J]. Optics Letters, 2019, 44(17): 4379-4382. doi: 10.1364/OL.44.004379 [54] JANSONAS G, ERDMAN E C, NOVÁK J, et al. Coherent combining of broadband pulses after free space optical parametric amplification[J]. Optics Express, 2024, 32(22): 39623-39631. doi: 10.1364/OE.531920 [55] ZHANG G L, LIANG X, XIE X L, et al. Theoretical analysis of the phase characteristics in few-cycle laser coherent beam combining[J]. Optics Express, 2024, 32(25): 45299-45314. doi: 10.1364/OE.543676 [56] LUREAU F, MATRAS G, CHALUS O, et al. High-energy hybrid femtosecond laser system demonstrating 2 × 10 PW capability[J]. High Power Laser Science and Engineering, 2020, 8: e43. doi: 10.1017/hpl.2020.41 [57] KHAZANOV E, SHAYKIN A, KOSTYUKOV I, et al. eXawatt center for extreme light studies[J]. High Power Laser Science and Engineering, 2023, 11: e78. doi: 10.1017/hpl.2023.69 [58] ZHOU T, RUPPE J, ZHU CH, et al. Coherent pulse stacking amplification using low-finesse Gires-Tournois interferometers[J]. Optics Express, 2015, 23(6): 7442-7462. doi: 10.1364/OE.23.007442 [59] BREITKOPF S, WUNDERLICH S, EIDAM T, et al. Extraction of enhanced, ultrashort laser pulses from a passive 10-MHz stack-and-dump cavity[J]. Applied Physics B, 2016, 122(12): 297. doi: 10.1007/s00340-016-6574-x [60] 张志刚. 相干脉冲堆积——超越啁啾脉冲放大的新技术[J]. 激光与光电子学进展, 2017, 54(12): 120001. doi: 10.3788/LOP54.120001ZHANG ZH G. Coherent pulse stacking—an innovation beyond the chirped pulse amplification[J]. Laser & Optoelectronics Progress, 2017, 54(12): 120001. (in Chinese). doi: 10.3788/LOP54.120001 [61] RAINVILLE A, WHITTLESEY M, PASQUALE C, et al. Near-complete extraction of maximum stored energy from large-core fibers using coherent pulse stacking amplification of femtosecond pulses[J]. Optica, 2024, 11(11): 1540-1548. doi: 10.1364/OPTICA.533803 [62] SIDORENKO P, FU W, WISE F. Nonlinear ultrafast fiber amplifiers beyond the gain-narrowing limit[J]. Optica, 2019, 6(10): 1328-1333. doi: 10.1364/OPTICA.6.001328 [63] SIDORENKO P, WISE F. Generation of 1 μJ and 40 fs pulses from a large mode area gain-managed nonlinear amplifier[J]. Optics Letters, 2020, 45(14): 4084-4087. doi: 10.1364/OL.396683 [64] REN B, LI C, WANG T, et al. Generation of ultrafast laser with 11 MW peak power from a gain-managed nonlinear tapered fiber amplifier[J]. Optics & Laser Technology, 2023, 160: 109081. doi: 10.1016/j.optlastec.2022.109081 [65] MA J D, LIU H H, CHEN Y J, et al. Generation of 35 fs, 20 μJ, GHz pulse burst by hybrid fiber amplification technique[J]. Optics Express, 2023, 31(21): 34224-34231. doi: 10.1364/OE.503079 [66] CHANG W Z, ZHOU T, SIIMAN L A, et al. Femtosecond pulse spectral synthesis in coherently-spectrally combined multi-channel fiber chirped pulse amplifiers[J]. Optics Express, 2013, 21(3): 3897-3910. doi: 10.1364/OE.21.003897 [67] GUICHARD F, HANNA M, LOMBARD L, et al. Two-channel pulse synthesis to overcome gain narrowing in femtosecond fiber amplifiers[J]. Optics Letters, 2013, 38(24): 5430-5433. doi: 10.1364/OL.38.005430 [68] GE A CH, LIU B W, CHEN W, et al. Generation of few-cycle laser pulses by coherent synthesis based on a femtosecond Yb-doped fiber laser amplification system[J]. Chinese Optics Letters, 2019, 17(4): 041403. doi: 10.3788/COL201917.041403 [69] CHEN S Y, ZHOU T, DU Q, et al. Broadband spectral combining of three pulse-shaped fiber amplifiers with 42fs compressed pulse duration[J]. Optics Express, 2023, 31(8): 12717-12724. doi: 10.1364/OE.486884 [70] SCHULZ W. Fiber lasers poised to advance berkeley lab’s development of practical laser-plasma accelerators[EB/OL]. (2021-12-06)[2021-12-06]. https://newscenter.lbl.gov/2021/12/06/fiber-lasers-poised-to-advance-berkeley-labs-development-of-practical-laser-plasma-accelerators/. [71] WILLIAMS C A. Spectrally combining lasers could unleash the potential of laser-plasma accelerators[EB/OL]. (2023-06-27)[2023-06-27]. https://atap.lbl.gov/news/spectrally-combining-lasers-could-unleash-the-potential-of-laser-plasma-accelerators/. -
下载: