Volume 12 Issue 6
Dec.  2019
Turn off MathJax
Article Contents
ZHU Xu-dan, ZHANG Rong-jun, ZHENG Yu-xiang, WANG Song-you, CHEN Liang-yao. Spectroscopic ellipsometry and its applications in the study of thin film materials[J]. Chinese Optics, 2019, 12(6): 1195-1234. doi: 10.3788/CO.20191206.1195
Citation: ZHU Xu-dan, ZHANG Rong-jun, ZHENG Yu-xiang, WANG Song-you, CHEN Liang-yao. Spectroscopic ellipsometry and its applications in the study of thin film materials[J]. Chinese Optics, 2019, 12(6): 1195-1234. doi: 10.3788/CO.20191206.1195

Spectroscopic ellipsometry and its applications in the study of thin film materials

doi: 10.3788/CO.20191206.1195

National Natural Science Foundation of China 11674062

National Natural Science Foundation of China 61775042

National Natural Science Foundation of China 11174058

National Natural Science Foundation of China 61575048

National Natural Science Foundation of China 69425004

National Natural Science Foundation of China 69178007

National Natural Science Foundation of China 19174013

More Information
  • Corresponding author: ZHANG Rong-jun, E-mail:rjzhang@fudan.edu.cn
  • Received Date: 04 Jul 2018
  • Rev Recd Date: 27 Jul 2018
  • Publish Date: 01 Dec 2019
  • Spectroscopic ellipsometry is used to measure the relative amplitude and phase change of linearly polarized light reflected by a material surface, so as to obtain the ellipsometric parameters. The optical properties of a material can be deduced by fitting these parameters. This technique is advantageous for being non-contact, highly sensitive, non-destructive, so it is widely used in physics, chemistry, materials science and microelectronics, etc, being an indispensable optical measurement method. This article first introduces the development history of the technology, and then presents the basic principle of the traditional ellipsometer. According to different measurement principles, ellipsometers can be divided into two types:extinction and photometric. The basic structure, measurement principle and related application of these two different types of ellipsometer are briefly clarified. After comparing these various ellipsometers, their advantages and disadvantages are introduced. At this point, a double Fourier transform infrared ellipsometry system developed by Fudan University is highlighted. Then, according to the basic steps of ellipsometric parameter manipulation, a measurement, modeling and fitting process is introduced. The equations of various optical dispersion models used for parameter fitting are introduced in detail and application examples are illustrated. Finally, the future development direction of spectroscopic ellipsometry is proposed.


  • loading
  • [1]
    美国国家研究理事会.驾驭光:21世纪光科学与工程学[M].上海:上海科学技术文献出版社, 2001.

    National Research Council. Harnessing Light:Optical Science and Engineering for the 21st Century[M]. Shanghai:Shanghai Scientific and Technical Literature Press, 2001.(in Chinese)
    廖振兴, 杨芳, 夏文建.光学薄膜膜厚监控方法及其进展[J].激光杂志, 2004, 25(4):10-12. doi: 10.3969/j.issn.0253-2743.2004.04.004

    LIAO ZH X, YANG F, XIA W J. Optical film thickness monitoring methods and its progress[J]. Laser Journal, 2004, 25(4):10-12.(in Chinese) doi: 10.3969/j.issn.0253-2743.2004.04.004
    唐晋发.现代光学薄膜技术[M].杭州:浙江大学出版社, 2006.

    TANG J F. Modern Optical Film Technology[M]. Hangzhou:Zhejiang University Press, 2006. (in Chinese)
    TOMPKINS H G. Industrial applications of spectroscopic ellipsometry[J]. Thin Solid Films, 2004, 455-456:772-778. doi: 10.1016/j.tsf.2004.01.045
    DRUDE P. Ueber die gesetze der reflexion und brechung des lichtes an der grenze absorbirender krystalle[J]. Annalen Der Physik, 1887, 268(12):584-625. doi: 10.1002/andp.18872681205
    DRUDE P. Bestimmung der optischen constanten der metalle[J]. Annalen Der Physik, 2010, 275(4):481-554. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1002/andp.18902750402
    ASPNES D E. Expanding horizons:new developments in ellipsometry and polarimetry[J]. Thin Solid Films, 2004, 455-456:3-13. doi: 10.1016/j.tsf.2003.12.038
    TRONSTAD L. The investigation of thin surface films on metals by means of reflected polarized light[J]. Transactions of the Faraday Society, 1933, 29(140):502-514. doi: 10.1039/tf9332900502
    KENT C V, LAWSON J. A photoelectric method for the determination of the parameters of elliptically polarized light[J]. Journal of the Optical Society of America, 1937, 27(3):117-119. doi: 10.1364/JOSA.27.000117
    ROTHEN A. The ellipsometer, an apparatus to measure thicknesses of thin surface films[J]. Review of Scientific Instruments, 1945, 16(2):26-30. doi: 10.1063/1.1770315
    BUDDE W. Photoelectric analysis of polarized light[J]. Applied Optics, 1962, 1(3):201-205. doi: 10.1364/AO.1.000201
    HAUGE P S, DILL F H. Design and operation of ETA, an automated ellipsometer[J]. IBM Journal of Research & Development, 1973, 17(6):472-489. doi: 10.1147-rd.176.0472/
    HAUGE P S, DILL F H. A rotating-compensator fourier ellipsometer[J]. Optics Communications, 1975, 14(4):431-437. doi: 10.1016/0030-4018(75)90012-7
    ASPNES D E, STUDNA A A. Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV[J]. Physical Review B, 1983, 27(2):985-1009. doi: 10.1103/PhysRevB.27.985
    JOHS B D, HE P, GREEN S E, et al.. Multiple order dispersive optics system and method of use: US, 5666201[P/OL].1997-09-09. http://digitalcommons.unl.edu/electricalengineeringfacpub/32.
    THOMPSON R C, BOTTIGER J R, FRY E S. Measurement of polarized light interactions via the Mueller matrix[J]. Applied Optics, 1980, 19(8):1323-1332. doi: 10.1364/AO.19.001323
    OSSIKOVSKI R, SHIRAI H, DRÉVILLON B. In situ investigation by IR ellipsometry of the growth and interfaces of amorphous silicon and related materials[J]. Thin Solid Films, 1993, 234(1-2):363-366. doi: 10.1016/0040-6090(93)90286-X
    JELLISON G E, MODINE F A. Two-modulator generalized ellipsometry:experiment and calibration[J]. Applied Optics, 1997, 36(31):8184-8189. doi: 10.1364/AO.36.008184
    ASPNES D E. Spectroscopic ellipsometry-past, present, and future[J]. Thin Solid Films, 2014, 571(9):334-344. http://cn.bing.com/academic/profile?id=95601ac11c563a08721adde0e0b30873&encoded=0&v=paper_preview&mkt=zh-cn
    ASPNESD E, THEENTENJ B, HOTTIERF. Investigation of effective-medium models of microscopic surface roughness by spectroscopic ellipsometry[J]. Physical Review B, 1979, 20(8):3292-3302. doi: 10.1103/PhysRevB.20.3292
    AZZAM R M A.Photopolarimetric measurement of the Mueller matrix by Fourier analysis of a single detected signal[J]. Optics Letters, 1978, 2(6):148-150. doi: 10.1364/OL.2.000148
    AZZAM R M A, GIARDINA K A, LOPEZ A G. Conventional and generalized Mueller-matrix ellipsometry using the four-detector photopolarimeter[J]. Optical Engineering, 1991, 30(10):1583. doi: 10.1117/12.55957
    肖国辉.多波长消光式椭偏测量技术研究[D].广州: 华南师范大学, 2009.

    XIAO G H. Study of measurement technology for multi-wavelength null ellipsometry[D]. Guangzhou: South China Normal University, 2009.(in Chinese)
    高龙.高精度椭圆偏振技术在盘垫片检测中的应用[D].哈尔滨: 哈尔滨工业大学, 2007.

    GAO L. Application of high-accuracy ellipsometry to measure magnetic disc[D]. Harbin: Harbin Institute of Technology, 2007.(in Chinese)
    罗晋生, 陈敏麒, 朱惠贤, 等.激光自动椭偏仪及其应用[J].西安交通大学学报, 1987, 21(3):61-68. http://www.cnki.com.cn/Article/CJFDTotal-XAJT198703006.htm

    LUO J SH, CHEN M Q, ZHU H X, et al.. Design of an automated laser ellipsometer and its applications[J]. Journal of Xi'an Jiaotong University, 1987, 21(3):61-68.(in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-XAJT198703006.htm
    朱慧贤, 罗晋生.0.5~2.0 eV红外光生自动椭偏仪的研制与应用[J].西安交通大学学报, 1993, 27(3):69-74. http://www.cnki.com.cn/Article/CJFDTotal-XAJT199303011.htm

    ZHU H X, LUO J SH. The design and application of 0.5~2.0 eV automatic infrared spectroscopic ellipsometer[J]. Journal of Xi'an Jiaotong University, 1993, 27(3):69-74.(in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-XAJT199303011.htm
    CHEN L Y, FENG X W, SU Y, et al.. Design of a scanning ellipsometer by synchronous rotation of the polarizer and analyzer[J]. Applied Optics, 1994, 33(7):1299-1305. doi: 10.1364/AO.33.001299
    黄志明, 金世荣, 陈诗伟, 等.同时旋转起偏器和检偏器的红外椭圆偏振光谱仪研制[J].红外与毫米波学报, 1998, 17(5):321-326. doi: 10.3321/j.issn:1001-9014.1998.05.001

    HUANG ZH M, JIN SH R, CHEN SH W, et al.. Development of infrared spectroscopic ellipsometer by synchronous rotation of the polarizer and analyzer[J]. Journal of Infrared and Millimeter Waves, 1998, 17(5):321-326.(in Chinese) doi: 10.3321/j.issn:1001-9014.1998.05.001
    孟永宏, 靳刚.椭偏光学显微成像系统中的图像采集及处理技术[J].光学 精密工程, 2000, 8(4):316-320. doi: 10.3321/j.issn:1004-924X.2000.04.003

    MENG Y H, JIN G. Technique of image grabbing and processing in ellipsometric image system[J]. Opt. Precision Eng., 2000, 8(4):316-320.(in Chinese) doi: 10.3321/j.issn:1004-924X.2000.04.003
    XIA G Q, ZHANG R J, CHEN Y L, et al.. New design of the variable angle infrared spectroscopic ellipsometer using double Fourier transforms[J]. Review of Scientific Instruments, 2000, 71(7):2677-2683. doi: 10.1063/1.1150674
    CHEN X G, ZHANG CH W, LIU SH Y, et al.. Accurate characterization of nanoimprinted resist patterns using Mueller matrix ellipsometry[J]. Optics Express, 2014, 22(12):15165-15177. doi: 10.1364/OE.22.015165
    CHEN X G, ZHANG CH W, LIU SH Y, et al.. Mueller matrix ellipsometric detection of profile asymmetry in nanoimprinted grating structures[J]. Journal of Applied Physics, 2014, 116(19):194305. doi: 10.1063/1.4902154
    李伟奇.高精度宽光谱穆勒矩阵椭偏仪研制与应用研究[D].武汉: 华中科技大学, 2016.

    LI W Q. Research on development and application of a high-precision broadband muller natrix ellipsometer[D]. Wuhan: Huazhong University of Science and Technology, 2016.(in Chinese)
    FUJIWARA H. Spectroscopic Ellipsometry:Principles and Applications[M]. West Sussex:England John Wiley & Sons, 2007.
    LOSURDO M, HINGERL K. Ellipsometry at the Nanoscale[M]. Berlin Heidelberg:Springer-Verlag, 2013.
    HINRICHS K, EICHHORN K J. Ellipsometry of Functional Organic Surfaces and Films[M]. Berlin Heidelberg:Springer-Verlag, 2014:52.
    杨坤, 王向朝, 步扬.椭偏仪的研究进展[J].激光与光电子学进展, 2007, 44(3):43-49. http://d.old.wanfangdata.com.cn/Periodical/jgygdzxjz200703007

    YANG K, WANG X CH, BU Y. Research progress of ellipsometry[J]. Laser & Optoelectronics Progress, 2007, 44(3):43-49.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/jgygdzxjz200703007
    吴仕梁.透明光电材料的椭偏研究[D].济南: 山东大学, 2012.

    WU SH L. Ellipsometry of transparent optoelectronic materials[D]. Jinan: Shandong University, 2012.(in Chinese)
    KALIMANOVA I, ILIEVA N, GEORGIEVA M. Ellipsometry and thin films parameters measurement[C]. 28th International Spring Seminar on Electronics Technology: Meeting the Challenges of Electronics Technology Progress, 2005: 472-475.
    TOMPKINS H G, IRENE E A. Handbook of Ellipsometry[M]. Co-published by:Norwich, Heidelberg, Germany:Springer-Verlag GmbH & Co. KG, 2005.
    ASPNES D E. Precision bounds to ellipsometer systems[J]. Applied Optics, 1975, 14(5):1131-1136. doi: 10.1364/AO.14.001131
    ASPNES D E, HAUGE P S. Rotating-compensator/analyzer fixed-analyzer ellipsometer:analysis and comparison to other automatic ellipsometers[J]. Journal of the Optical Society of America, 1976, 66(9):949-954. doi: 10.1364/JOSA.66.000949
    CHEN L Y, LYNCH D W. Scanning ellipsometer by rotating polarizer and analyzer[J]. Applied Optics, 1987, 26(24):5221-5228. doi: 10.1364/AO.26.005221
    EL-AGEZ T M, ELTAYYAN A A E, TAYA S A. Rotating polarizer-analyzer scanning ellipsometer[J]. Thin Solid Films, 2010, 518(19):5610-5614. doi: 10.1016/j.tsf.2010.04.067
    MAO P H, ZHENG Y X, CHEN Y R, et al.. Study of the new ellipsometric measurement method using integrated analyzer in parallel mode[J]. Optics Express, 2009, 17(10):8641-8650. doi: 10.1364/OE.17.008641
    CHEN L Y, FENG X W, SU Y, et al.. Improved rotating analyzer-polarizer type of scanning ellipsometer[J]. Thin Solid Film, 1993, 234(1-2):385-389 doi: 10.1016/0040-6090(93)90291-V
    HAUGE P S. Mueller matrix ellipsometry with imperfect compensators[J]. Journal of the Optical Society of America, 1978, 68(11):1519-1528. doi: 10.1364/JOSA.68.001519
    GEHRELS T. Planets, Stars and Nebulae Studied with Photopolarimetry[M]. Tucson, Arizon:University of Arizona Press, 1974.
    陈岳立, 张荣君, 夏国强, 等.双重傅里叶变换红外椭偏光谱系统的研制[J].光学学报, 2001, 21(6):729-733. doi: 10.3321/j.issn:0253-2239.2001.06.021

    CHEN Y L, ZHANG R J, XIA G Q, et al.. Design of an infrared spectroscopic ellipsometer using double-fourier-transform method[J]. Acta Optica Sinica, 2001, 21(6):729-733.(in Chinese) doi: 10.3321/j.issn:0253-2239.2001.06.021
    冯守志.尺寸可控的硅纳米晶及硅纳米晶与二氧化硅复合薄膜的椭圆偏振光谱研究[D].上海: 复旦大学, 2007.

    FENG SH ZH. Spectroscopic ellipsoscopic study of size-controlled silicon nano-crystals and silicon nano-crystals: SiO2 composite thin film[D]. Shanghai: Fudan University, 2007.(in Chinese)
    JASPERSON S N, SCHNATTERLY S E. An improved method for high reflectivity ellipsometry based on a new polarization modulation technique[J]. Review of Scientific Instruments, 1969, 40(6):761-767. doi: 10.1063/1.1684062
    ADACHI S. Optical Constants of Crystalline and Amorphous Semiconductors:Numerical Data and Graphical Information[M]. Boston, MA:Springer, 1999.
    LEE J, COLLINS R W, HEYD A R, et al.. Spectroellipsometry for characterization of Zn1-xCdxSe multilayered structures on GaAs[J]. Applied Physics Letters, 1996, 69(15):2273-2275. doi: 10.1063/1.117531
    SERAPHIN B O. Optical Properties of Solids:New Developments[M]. American:Elsevier, 1976.
    ERMAN M, THEETEN J B, CHAMBON P, et al.. Optical properties and damage analysis of GaAs single crystals partly amorphized by ion implantation[J]. Journal of Applied Physics, 1984, 56(10):2664-2671. doi: 10.1063/1.333785
    ASPNES D E, STUDNA A A. High precision scanning ellipsometer[J]. Applied Optics, 1975, 14(1):220-228. doi: 10.1364/AO.14.000220
    BEAGLEHOLE D. Performance of a microscopic imaging ellipsometer[J]. Review of Scientific Instruments, 1988, 59(12):2557-2559. doi: 10.1063/1.1139897
    游海洋, 贾建虎, 陈剑科, 等.面阵CCD探测的全自动椭圆偏振光谱系统研究[J].红外与毫米波学报, 2003, 22(1):45-50. doi: 10.3321/j.issn:1001-9014.2003.01.010

    YOU H Y, JIA J H, CHEN J K, et al.. The study of a auto ellipsometer system by using a two-dimensional CCD array detector[J]. Journal of Infrared and Millimeter Waves, 2003, 22(1):45-50.(in Chinese) doi: 10.3321/j.issn:1001-9014.2003.01.010
    JIN G, JANSSON R, ARWIN H. Imaging ellipsometry revisited:developments for visualization of thin transparent layers on silicon substrates[J]. Review of Scientific Instruments, 1996, 67(8):2930-2936. doi: 10.1063/1.1147074
    SCHUBERT M, RHEINLÄNDER B, WOOLLAM J A, et al.. Extension of rotating-analyzer ellipsometry to generalized ellipsometry:determination of the dielectric function tensor from uniaxial TiO2[J]. Journal of the Optical Society of America A, 1996, 13(4):875-883. doi: 10.1364/JOSAA.13.000875
    CHEN CH, AN I, FERREIRA G M, et al.. Multichannel Mueller matrix ellipsometer based on the dual rotating compensator principle[J]. Thin Solid Films, 2004, 455-456(1):14-23. http://cn.bing.com/academic/profile?id=e1af353b3c3e7277079f693c13c7a4db&encoded=0&v=paper_preview&mkt=zh-cn
    JELLISON G E, MODINE F A. Two-modulator generalized ellipsometry:theory[J]. Applied Optics, 1997, 36(31):8190-8198. doi: 10.1364/AO.36.008190
    JELLISON G E, HUNN J D, ROULEAU C M. Normal-incidence generalized ellipsometry using the two-modulator generalized ellipsometry microscope[J]. Applied Optics, 2006, 45(22):5479-5488. doi: 10.1364/AO.45.005479
    JELLISON JR G E, HOLCOMB D E, HUNN J D, et al.. Generalized ellipsometry in unusual configurations[J]. Applied Surface Science, 2006, 253(1):47-51. doi: 10.1016/j.apsusc.2006.05.120
    张冬旭.几种信息功能薄膜材料的椭圆偏振光谱研究[D].上海: 复旦大学, 2014.

    ZHANG D X. Optical properties of several kinds of information films studied by spectroscopic ellipsometry[D]. Shanghai: Fudan University, 2014.(in Chinese)
    KRAVETS V G, GRIGORENKO A N, NAIR R R, et al.. Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption[J]. Physical Review B, 2010, 81(15):155413. doi: 10.1103/PhysRevB.81.155413
    SCHULZ B, CHAN D, BÄCKSTRÖM J, et al.. Spectroscopic ellipsometry on biological materials-investigation of hydration dynamics and structural properties[J]. Thin Solid Films, 2004, 455-456(1):731-734. http://cn.bing.com/academic/profile?id=0f94bd0b2cda683fc127e3bdf5312492&encoded=0&v=paper_preview&mkt=zh-cn
    WOOLLAM J A. Ellipsometry solutions: Ellipsometry data analysis[EB/OL]. https://www.jawoollam.com/resources/ellipsometry-tutorial/ellipsometry-data-analysis.
    HILFIKER J N, SINGH N, TIWALD T, et al.. Survey of methods to characterize thin absorbing films with spectroscopic ellipsometry[J]. Thin Solid Films, 2008, 516(22):7979-7989. doi: 10.1016/j.tsf.2008.04.060
    BASU S R, MARTIN L W, CHU Y H, et al.. Photoconductivity in BiFeO3 thin films[J]. Applied Physics Letters, 2008, 92(9):091905. doi: 10.1063/1.2887908
    PRICE J, BERSUKER G, LYSAGHT P S. Identification of electrically active defects in thin dielectric films by spectroscopic ellipsometry[J]. Journal of Applied Physics, 2012, 111(4):043507-1-043507-6. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5a139f74f40a5fb2ca82ec84b0c3f80b
    XU J P, ZHANG R J, ZHANG Y, et al. The thickness-dependent band gap and defect features of ultrathin ZrO2 films studied by spectroscopic ellipsometry[J]. Physical Chemistry Chemical Physics PCCP, 2016, 18(4):3316-3321. doi: 10.1039/C5CP05592J
    LI D H, ZHENG H, WANG Z Y, et al.. Dielectric functions and critical points of crystalline WS2 ultrathin films with tunable thickness[J]. Physical Chemistry Chemical Physics, 2017, 19(19):12022-12031. doi: 10.1039/C7CP00660H
    DRUDE P. Zur elektronentheorie der metalle; Ⅱ.Teil. Galvanomagnetische und thermomagnetische effecte[J]. Annalen Der Physik, 1900, 308(11):369-402. doi: 10.1002/andp.19003081102
    LORENTZ H A. The Theory of Electrons and Its Applications to the Phenomena of Light and Radiant Heat[M]. New York:G.E. Stechert & Co. 1909.
    JELLISON JR G E, MODINE F A. Parameterization of the optical functions of amorphous materials in the interband region[J]. Applied Physics Letters, 1996, 69(3):371-373. doi: 10.1063/1.118064
    PRICE J, HUNG P Y, RHOAD T, et al.. Spectroscopic ellipsometry characterization of HfxSiyOz films using the Cody-Lorentz parameterized model[J]. Applied Physics Letters, 2004, 85(10):1701-1703. doi: 10.1063/1.1784889
    ZHAO D D, CAI Q Y, ZHENG Y X, et al.. Optical constants of e-beam evaporated and annealed Nb2O5 thin films with varying thickness[J]. Journal of Physics D:Applied Physics, 2016, 49(26):265304. doi: 10.1088/0022-3727/49/26/265304
    ESRO M, VOURLIAS G, SOMERTON C, et al.. High-mobility ZnO thin film transistors based on solution-processed hafnium oxide gate dielectrics[J]. Advanced Functional Materials, 2015, 25:134-141. doi: 10.1002/adfm.201402684
    JANSSON R, ZANGOOIE S, ARWIN H, et al.. Characterization of 3C-SiC by spectroscopic ellipsometry[J]. Physica Status Solidi B, 2015, 218(1):r1-r2. doi: 10.1002/(SICI)1521-3951(200003)218:13.0.CO;2-0
    ZHANG D X, ZHENG Y X, CAI Q Y, et al.. Thickness-dependence of optical constants for Ta2O5, ultrathin films[J]. Applied Physics A, 2012, 108(4):975-979. doi: 10.1007/s00339-012-7007-2
    ZHANG D X, SHEN B, ZHENG Y X, et al.. Evolution of optical properties of thin film from solid to liquid studied by spectroscopic ellipsometry and ab initio calculation[J]. Applied Physics Letters, 2014, 104(12):121907. doi: 10.1063/1.4869722
    STEIRER K X, NDIONE P F, WIDJONARKO N E, et al.. Enhanced efficiency in plastic solar cells via energy matched solution processed NiOx interlayers[J]. Advanced Energy Materials, 2011, 1(5):813-820. doi: 10.1002/aenm.201100234
    GHOSH M, PRADIPKANTI L, RAI V, et al.. Confined water layers in graphene oxide probed with spectroscopic ellipsometry[J]. Applied Physics Letters, 2015, 106(24):241902. doi: 10.1063/1.4922731
    YANG L, ZHENG Y X, YANG S D, et al.. Ellipsometric study on temperature dependent optical properties of topological bismuth film[J]. Applied Surface Science, 2017, 421(Part B):899-904. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=146271fb2df48be51bb1fea1888e98da
    WANG Z Y, ZHANG R J, LU H L, et al.. The impact of thickness and thermal annealing on refractive index for aluminum oxide thin films deposited by atomic layer deposition[J]. Nanoscale Research Letters, 2015, 10(1):46. doi: 10.1186/s11671-015-0757-y
    李彤, 张美玲, 王菲, 等.键合型掺铒纳米晶-聚合物波导放大器的制备[J].中国光学, 2017, 10(2):219-225. http://www.chineseoptics.net.cn/CN/abstract/abstract9492.shtml

    LI T, ZHANG M L, WANG F, et al.. Fabrication of optical waveguide amplifiers based on bonding-type NaYF4:Er nanoparticles-polymer[J]. Chinese Optics, 2017, 10(2):219-225.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9492.shtml
    JIANG J H, ZHU L P, ZHU L J, et al.. Surface characteristics of a self-polymerized dopamine coating deposited on hydrophobic polymer films[J]. Langmuir the Acs Journal of Surfaces & Colloids, 2011, 27(23):14180-14187. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7462435ef105d8d9bec71072717e919e
    FOROUHI A R, BLOOMER I. Optical dispersion relations for amorphous semiconductors and amorphous dielectrics[J]. Physical Review B Condensed Matter, 1986, 34(10):7018-7026. doi: 10.1103/PhysRevB.34.7018
    FOROUHI A R, BLOOMER I. Optical properties of crystalline semiconductors and dielectrics[J]. Physical Review B, 1988, 38(3):1865-1874. doi: 10.1103/PhysRevB.38.1865
    ZHENG H, ZHANG R J, XU J P, et al.. Thickness-dependent optical constants and annealed phase transitions of ultrathin ZnO films[J]. Journal of Physical Chemistry C, 2016, 120(39):22532-22538. doi: 10.1021/acs.jpcc.6b06173
    CHRYSICOPOULOU P, DAVAZOGLOU D, TRAPALIS C, et al.. Optical properties of very thin(< 100 nm) sol-gel TiO2 films[J]. Thin Solid Films, 1998, 323(1-2):188-193. doi: 10.1016/S0040-6090(97)01018-3
    HEITMANN J, MVLLER F, YI L X, et al.. Excitons in Si nanocrystals:confinement and migration effects[J]. Physical Review B, 2004, 69(19):195309. doi: 10.1103/PhysRevB.69.195309
    ZACHARIAS M, HILLER D, HARTEL A, et al.. Defect engineering of Si nanocrystal interfaces[J]. Physica Status Solidi A, 2012, 209(12):2449-2454. doi: 10.1002/pssa.201200734
    SHI Y J, ZHANG R J, ZHENG H, et al.. Optical constants and band gap evolution with phase transition in sub-20-nm-thick TiO2 films prepared by ALD[J]. Nanoscale Research Letters, 2017, 12(1):243. doi: 10.1186/s11671-017-2011-2
    LI D H, ZHAI C H, ZHOU W C, et al.. Effects of bilayer thickness on the morphological, optical, and electrical properties of Al2O3/ZnO nanolaminates[J]. Nanoscale Research Letters, 2017, 12(1):563. doi: 10.1186/s11671-017-2328-x
    LOU Y Y, WANG L J, MA H L, et al.. Ellipsometric study of CVD diamond films prepared with various grain sizes[J]. Proceedings of SPIE, 2008, 6984:698419. doi: 10.1117/12.792395
    LÖPER P, STUCKELBERGER M, NIESEN B, et al.. Complex refractive index spectra of CH3NH3PbI3 perovskite thin films determined by spectroscopic ellipsometry and spectrophotometry[J]. Journal of Physical Chemistry Letters, 2015, 6(1):66-71. doi: 10.1021/jz502471h
    XIE Z A, LIU SH F, QIN L X, et al.. Refractive index and extinction coefficient of CH3NH3PbI3 studied by spectroscopic ellipsometry[J]. Optical Materials Express, 2015, 5(1):29-43. doi: 10.1364/OME.5.000029
    TAUC J, GRIGOROVICI R, VANCU A. Optical properties and electronic structure of amorphous germanium[J]. Physica Status Solidi, 1966, 15(2):627-637. doi: 10.1002/pssb.19660150224
    WANG Z Y, YUAN S J, LI D H, et al.. Influence of hydration water on CH3NH3PbI3 perovskite films prepared through one-step procedure[J]. Optics Express, 2016, 24(22):A1431-A1443. doi: 10.1364/OE.24.0A1431
    SHIRAYAMA M, KADOWAKI H, MIYADERA T, et al.. Optical transitions in hybrid perovskite solar cells:ellipsometry, density functional theory, and quantum efficiency analyses for CH3NH3PbI3[J]. Physical Review Applied, 2016, 5(1):014012. doi: 10.1103/PhysRevApplied.5.014012
    IHLEFELD J F, PODRAZA N J, LIU Z K, et al.. Optical band gap of BiFeO3 grown by molecular-beam epitaxy[J]. Applied Physics Letters, 2008, 92(14):142908. doi: 10.1063/1.2901160
    CHAIBI F, JEMAI R, AGUAS H, et al.. The effects of argon and helium dilution in the growth of nc-Si:H thin films by plasma-enhanced chemical vapor deposition[J]. Journal of Materials Science, 2018, 53(5):3672-3681. doi: 10.1007/s10853-017-1791-1
    ORDAL M A, LONG L L, BELL R J, et al.. Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared[J]. Applied Optics, 1983, 22(7):1099-1119. doi: 10.1364/AO.22.001099
    HU E T, CAI Q Y, ZHANG R J, et al.. Effective method to study the thickness-dependent dielectric functions of nanometal thin film[J]. Optics Letters, 2016, 41(21):4907-4910. doi: 10.1364/OL.41.004907
    ETCHEGOIN P G, LERU E C, MEYER M. An analytic model for the optical properties of gold[J]. Journal of Chemical Physics, 2006, 125(16):164705. doi: 10.1063/1.2360270
    BRUGGEMAN D A G. Calculation of various physics constants in heterogenous substances I.dielectricity constants and conductivity of mixed bodies from isotropic substances[J]. Annalen der Physik, 1935, 27(7):636-664..
    THEETEN J B, ASPNES D E. The determination of interface layers by spectroscopic ellipsometry[J]. Thin Solid Films, 1979, 60(2):183-192. doi: 10.1016/0040-6090(79)90188-3
    YANG SH D, YANG L, ZHENG Y X, et al.. Structural-dependent optical properties of self-organized Bi2Se3 nanostructures:from nanocrystals to nanoflakes[J]. ACS Applied Materials & Interfaces, 2017, 9(34):29295-29301. doi: 10.1021/acsami.7b08834
    ZHANG R J, CHEN Y M, LU W J, et al.. Influence of nanocrystal size on dielectric functions of Si nanocrystals embedded in SiO2 matrix[J]. Applied Physics Letters, 2009, 95(16):161109. doi: 10.1063/1.3254183
    XU J P, ZHANG R J, CHEN Z H, et al.. Optical properties of epitaxial BiFeO3 thin film grown on SrRuO3-buffered SrTiO3 substrate[J]. Nanoscale Research Letters, 2014, 9(1):188. doi: 10.1186/1556-276X-9-188
    TAKEUCHI K, ADACHI S. Optical properties of β-Sn films[J]. Journal of Applied Physics, 2009, 105(7):073520. doi: 10.1063/1.3106528
    LOSURDO M. Applications of ellipsometry in nanoscale science:needs, status, achievements and future challenges[J]. Thin Solid Films, 2011, 519(9):2575-2583. doi: 10.1016/j.tsf.2010.11.066
    乔自文, 高炳荣, 陈岐岱, 等.飞秒超快光谱技术及其互补使用[J].中国光学, 2014, 7(4):588-599. http://www.chineseoptics.net.cn/CN/abstract/abstract9168.shtml

    QIAO Z W, GAO B R, CHEN Q D, ,et al.. Ultrafast spectroscopy technique and their complementary usages[J]. Chinese Optics, 2014, 7(4):588-599.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9168.shtml
    潘新宇, 龚旗煌.超快光声光谱技术的进展和前景[J].物理, 2002, 31(10):647-650. doi: 10.3321/j.issn:0379-4148.2002.10.006

    PAN X Y, GONG Q H. Progress and prospects of ultrafast photoacoustic spectroscopy[J]. Physics, 2002, 31(10):647-650.(in Chinese) doi: 10.3321/j.issn:0379-4148.2002.10.006
    CHE M, VÉDRINE J C. Characterization of Solid Materials and Heterogeneous Catalysts:From Structure to Surface Reactivity[M]. Weinheim, Germany:Wiley-VCH Verlag GmbH & Co. KGaA, 2012.
    牛晓龙, 乔松, 张莉沫, 等.利用光致发光技术研究多晶硅片厚度对太阳电池性能的影响[J].光电子技术, 2016, 36(1):55-58. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdzjs201601011

    NIU X L, QIAO S, ZHANG L M, ,et al.. Application of photoluminescence for investigating the influence of wafer thickness on the performance of multicrystalline silicon solar cell[J]. Optoelectronic Technology, 2016, 36(1):55-58.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdzjs201601011
    HOMAN S B, SANGWAN V K, BALLA I, et al.. Ultrafast exciton dissociation and long-lived charge separation in a photovoltaic pentacene-MoS2 van der waals heterojunction[J]. Nano Letters, 2017, 17(1):164-169. doi: 10.1021/acs.nanolett.6b03704
    CEBALLOS F, BELLUS M Z, CHIU H Y, et al.. Ultrafast charge separation and indirect exciton formation in a MoS2-MoSe2 van der waals heterostructure[J]. ACS Nano, 2014, 8(12):12717-12724. doi: 10.1021/nn505736z
    HE J Q, KUMAR N, BELLUS M Z, et al.. Electron transfer and coupling in graphene-tungsten disulfide van der waals heterostructures[J]. Nature Communications, 2014, 5(1):5622. doi: 10.1038/ncomms6622
    SARICIFTCI N S. Primary Photoexcitations in Conjugated Polymers:Molecular Exciton Versus Semiconductor Band Model[M].Singapore:World Scientific Publishing Co. Pte. Ltd, 1997.
    MAO P H, ZHENG Y X, CAI Q Y, et al.. Approach to error analysis and reduction for rotating-polarizer-analyzer ellipsometer[J]. Journal of the Physical Society of Japan, 2012, 81(12):124003. doi: 10.1143/JPSJ.81.124003
    DEFRANOUX C, EMERAUD T, BOURTAULT S, et al.. Infrared spectroscopic ellipsometry applied to the characterization of ultra shallow junction on silicon and SOI[J]. Thin Solid Films, 2004, 455-456:150-156. doi: 10.1016/j.tsf.2004.02.008
    COBET C, WILMERS K, WETHKAMP T, et al.. Optical properties of SiC investigated by spectroscopic ellipsometry from 3.5 to 10 eV[J]. Thin Soild Films, 2000, 364(1-2):111-113.. doi: 10.1016/S0040-6090(99)00893-7
    王珣, 金春水, 匡尚奇, 等.极紫外光学器件辐照污染检测技术[J].中国光学2014, 7(1):79-88. http://www.chineseoptics.net.cn/CN/abstract/abstract9099.shtml

    WANG X, JIN CH SH, KUANG SH Q, et al.. Techniques of radiation contamination monitoring for extreme ultraviolet devices[J]. Chinese Optics, 2014, 7(1):79-88.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9099.shtml
    HLINKA J, OSTAPCHUK T, NUZHNYY D, et al.. Coexistence of the phonon and relaxation soft modes in the terahertz dielectric response of tetragonal BaTiO3[J]. Physical Review Letters, 2008, 101(16):167402. doi: 10.1103/PhysRevLett.101.167402
    HE Y ZH, UNG B S Y, PARROTT E P J, et al.. Freeze-thaw hysteresis effects in terahertz imaging of biomedical tissues[J]. Biomedical Optics Express, 2016, 7(11):4711-4717. doi: 10.1364/BOE.7.004711
    CHEON H, YANG H J, LEE S H, et al.. Terahertz molecular resonance of cancer DNA[J]. Scientific Reports, 2016, 6:37103. doi: 10.1038/srep37103
    FAN SH T, UNG B S Y, PARROTT E P J, et al.. In vivo terahertz reflection imaging of human scars during and after the healing process[J]. Journal of Biophotonics, 2016, 10(9):1143-1151. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1002/jbio.201600171
    BAIERL S, HOHENLEUTNER M, KAMPFRATH T, et al.. Nonlinear spin control by terahertz-driven anisotropy fields[J]. Nature Photonics, 2016, 10(11):715-718. doi: 10.1038/nphoton.2016.181
    MUKAI Y, HIRORI H, YAMAMOTO T, et al.. Antiferromagnetic resonance excitation by terahertz magnetic field resonantly enhanced with split ring resonator[J]. Applied Physics Letters, 2014, 105(2):022410. doi: 10.1063/1.4890475
    SOTOME M, KIDA N, HORIUCHI S, et al.. Visualization of ferroelectric domains in a hydrogen-bonded molecular crystal using emission of terahertz radiation[J]. Applied Physics Letters, 2014, 105(4):041101. doi: 10.1063/1.4890939
    HOFMANN T, HERZINGER C M, BOOSALIS A, et al.. Variable-wavelength frequency-domain terahertz ellipsometry[J]. Review of Scientific Instruments, 2010, 81(2):023101. doi: 10.1063/1.3297902
    CHEN X Q, PARROTT E P J, HUANG ZH, et al.. Robust and accurate terahertz time-domain spectroscopic ellipsometry[J]. Photonics Research, 2018, 6(8):768-775. doi: 10.1364/PRJ.6.000768
    KÜHNE P, ARMAKAVICIUS N, STANISHEV V, et al.. Advanced terahertz frequency-domain ellipsometry instrumentation for in situ and ex situ applications[J]. IEEE Transactions on Terahertz Science & Technology, 2018, 8(3):257-270. http://cn.bing.com/academic/profile?id=33f6768770d990413e2fac26c732bec7&encoded=0&v=paper_preview&mkt=zh-cn
    VAUPEL M, EING A GREULICH K O, et al.. Microarray Technology and Its Applications:Marker-free Detection on Microarrays[M]. Gemany:Springer, 2004.
    POKSINSKI M, ARWIN H. Protein monolayers monitored by internal reflection ellipsometry[J]. Thin Solid Films, 2004, 455-456:716-721. doi: 10.1016/j.tsf.2004.01.037
    KARLSSON L M, SCHUBERT M, ASHKENOV N, ,et al.. Protein adsorption in porous silicon gradients monitored by spatially-resolved spectroscopic ellipsometry[J]. Thin Solid Films, 2004, 455-456:726-730. doi: 10.1016/j.tsf.2004.01.062
    GARCIA-CAUREL E, NGUYEN J, SCHWARTZ L, et al.. Application of FTIR ellipsometry to detect and classify microorganisms[J]. Thin Solid Films, 2004, 455-456:722-725. doi: 10.1016/j.tsf.2004.02.005
    LIN C H, CHEN H L, CHAO W CH, et al.. Optical characterization of two-dimensional photonic crystals based on spectroscopic ellipsometry with rigorous coupled-wave analysis[J]. Microelectronic Engineering, 2006, 83(4-9):1798-1804. doi: 10.1016/j.mee.2006.01.135
    PÁPA Z, CSONTOS J, SMAUSZ T, et al.. Spectroscopic ellipsometric investigation of graphene and thin carbon films from the point of view of depolarization effects[J]. Applied Surface Science, 2017, 421(B):714-721. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=53a7bcfacd84c4d6ef23b235ca069fad
    AL-HAZMI F S, BEALL G W, AL-GHAMDI A A, et al.. Raman and ellipsometry spectroscopic analysis of graphene films grown directly on Si substrate via CVD technique for estimating the graphene atomic planes number[J]. Journal of Molecular Structure, 2016, 1118:275-278. doi: 10.1016/j.molstruc.2016.04.028
    刘洪兴, 张巍, 巩岩.光栅参数测量技术研究进展[J].中国光学, 2011, 4(2):103-110. doi: 10.3969/j.issn.2095-1531.2011.02.002

    LIU H X, ZHANG W, GONG Y. Research progress on grating parameter measurement technology[J]. Chinese Optics, 2011, 4(2):103-110.(in Chinese) doi: 10.3969/j.issn.2095-1531.2011.02.002
    BANON J P, NESSE T, KILDEMO M, et al.. Critical dimension metrology of a plasmonic photonic crystal based on Muller matrix ellipsometry and the reduced Rayleigh equation[J]. Optics Letters, 2017, 42(13):2631-2634. doi: 10.1364/OL.42.002631
    陈修国, 袁奎, 杜卫超, 等.基于Mueller矩阵成像椭偏仪的纳米结构几何参数大面积测量[J].物理学报, 2016, 65(7):070703. http://d.old.wanfangdata.com.cn/Periodical/wlxb201607008

    CHEN X G, YUAN K, DU W CH, et al.. Large-scale nanostructure metrology using Muellermatrix imaging ellipsometry[J]. Acta Physica Sinica, 2016, 65(7):070703.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/wlxb201607008
    宋平.磁光椭偏仪的研究[D].济南: 山东大学, 2011.

    SONG P. Study of magneto-optical Ellipsometry[D]. Jinan: Shandong University, 2011.(in Chinese)
    王晓.纳米尺度磁性薄膜材料的磁光特性研究[D].济南: 山东大学, 2014.

    WANG X. Characterization of magneto-optical properties of nano-scale magnetic thin film[D]. Jinan: Shandong University, 2014.(in Chinese)
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(39)  / Tables(1)

    Article views(4951) PDF downloads(567) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint