留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

极紫外光学器件辐照污染检测技术

王珣 金春水 匡尚奇 喻波

王珣, 金春水, 匡尚奇, 喻波. 极紫外光学器件辐照污染检测技术[J]. 中国光学(中英文), 2014, 7(1): 79-88. doi: 10.3788/CO.20140701.079
引用本文: 王珣, 金春水, 匡尚奇, 喻波. 极紫外光学器件辐照污染检测技术[J]. 中国光学(中英文), 2014, 7(1): 79-88. doi: 10.3788/CO.20140701.079
WANG Xun, JIN Chun-shui, KUANG Shang-qi, YU Bo. Techniques of radiation contamination monitoring for extreme ultraviolet devices[J]. Chinese Optics, 2014, 7(1): 79-88. doi: 10.3788/CO.20140701.079
Citation: WANG Xun, JIN Chun-shui, KUANG Shang-qi, YU Bo. Techniques of radiation contamination monitoring for extreme ultraviolet devices[J]. Chinese Optics, 2014, 7(1): 79-88. doi: 10.3788/CO.20140701.079

极紫外光学器件辐照污染检测技术

doi: 10.3788/CO.20140701.079
基金项目: 

国家科技重大专项(02专项)资助项目

详细信息
    作者简介:

    王珣(1987—),男,辽宁大连人,博士研究生,2010年于沈阳理工大学获得学士学位,主要从事极紫外多层膜技术等方面的研究。E-mail:gocga@126.com

    通讯作者:

    金春水,E-mail:jincs@sklao.ac.cn

  • 中图分类号: O484.5;O434.19

Techniques of radiation contamination monitoring for extreme ultraviolet devices

  • 摘要: 总结并讨论了极紫外光刻技术中,有关极紫外光学器件受辐照污染的在线检测方法。简要介绍了极紫外光刻系统的原理、反射镜膜层结构以及表面污染产生的机理;指出光刻系统中在线检测的技术要求;分析了目前几种主要表面检测技术的特点;给出了每种方法在极紫外光学系统中的应用潜力;最后,指出光纤椭偏仪在极紫外光学系统的在线表面污染检测中具有良好的应用前景。

     

  • [1] BAKSHI V. EUV Lithography[M]. Bellingham:SPIE Press, 2008, 2(1):19-20. [2] ATTWOOD D. Soft X-Rays and Extreme Ultraviolet Radiation:Principles and Applications[M]. Cambridge:Cambridge Press, 1999. [3] RONSE K. Optical lithography—a historical perspective[J]. Comptes Rendus Physique, 2006, 7:844-857. [4] 窦银萍, 孙长凯, 林景全. 激光等离子体极紫外光刻光源[J]. 中国光学, 2013, 6(1):20-33. DOU Y P, SUN CH K, LIN J Q. Laser-produced plasma light source for extreme ultraviolet lithography[J]. Chinese Optics, 2013, 6(1):20-33.(in Chinese) [5] FAY B. Advanced optical lithography development, from UV to EUV[J]. Microelectronic Eng., 2002, 61-62:11-24. [6] 张立超. 极紫外多层膜技术研究进展[J]. 中国光学, 2010, 3(6):554-565. ZHANG L CH. Progress in EUV multilayer coating technologies[J]. Chinese Optics, 2010, 3(6):554-565.(in Chinese) [7] SPILLER E. Soft X-Ray Optics[M]. Bellingham:SPIE Press, 1994. [8] ZOETHOUT E, SIPOS G, VAN DE KRUIJS R W, et al.. Stress mitigation in Mo/Si multilayers for EUV lithography[J]. SPIE, 2003, 5037:872-878. [9] 朱京涛, 宋竹青, 丁涛, 等. 极紫外Mg/SiC、Mg/Co多层膜的稳定性[J]. 光学 精密工程, 2013, 21(6):1380-1386. ZHU J T, SONG ZH Q, DING T, et al.. Stability of Mg/SiC, Mg/Co EUV multilayers[J]. Opt. Precision Eng., 2013, 21(6):1380-1386.(in Chinese) [10] 陈波, 何飞. 月基地球等离子体层极紫外成像仪的光学设计[J]. 光学 精密工程, 2011, 19(9):2057-2062. CHEN B, HE F. Optical design of moon-based earth's plasmaspheric extreme ultraviolet imager[J]. Opt. Precision Eng., 2011, 19(9):2057-2062.(in Chinese) [11] MEILING H, MEIJER H, BANINE V, et al.. First performance results of the ASML alpha demo tool[J]. SPIE, 2006, 6151:615-108. [12] BOLLER K J, HAELBICH R P, HOGREFE H, et al.. Investigation of carbon contamination of mirror surfaces exposed to synchrotron radiation[J]. Nuclear Instruments and Methods in Phys. Res., 1983, 208:273-279. [13] HOLLENSHEAD J, KLEBANOFF L. Modeling radiation-induced carbon contamination of extreme ultraviolet optics[J]. J. Vacuum Science Technology, 2006, B 24:64-82. [14] NAITO T, TADANO M, TERUNUMA N, et al.. Investigation of carbon contamination on SR-irradiated devices[J]. Nuclear Instruments & Methods in Physics Research Section a-Accelerators Spectrometers Detectors and Associated Equipment, 2004, 527:624-631. [15] MERTENS B, WEISS M, MEILING H, et al.. Progress in EUV optics lifetime expectations[J]. Microelectronic Eng., 2004, 73-74:16-22. [16] OESTREICH S, KLEIN R, SCHOLZE F, et al.. Multilayer reflectance during exposure to EUV radiation[J]. SPIE, 2000, 4146:64-71. [17] OKOROANYANWU U, JIANG A, DITTMAR K, et al.. Monitoring reticle molecular contamination in ASML EUV Alpha Demo Tool[J]. SPIE, 2010, 7636:76360H. [18] OKOROANYANWU U, DITTMAR K, FAHR T, et al..Analysis and characterization of contamination in EUV reticles[J]. SPIE, 2010, 7636:76361Y. [19] KYRIAKOU G, DAVIS D J, GRANT R B, et al.. Electron impact-assisted carbon film growth on Ru(0001):Implications for next-generation EUV lithography[J]. J. Phys. Chem., 2007, C111:4491-4494. [20] MATSUNARI S, AOKI T, MURAKAMI K, et al.. Carbon deposition on multi-layer mirrors by extreme ultra violet ray irradiation[J]. SPIE, 2007, 6517:65172X-8. [21] KOSTER N, MERTENS B, JANSEN R, et al..Molecular contamination mitigation in EUVL by environmental control[J]. Microelectronic Eng., 2002, 61-2:65-76. [22] LEE D H, TOMIE T, JESSIE D, et al.. Detection of atomic-level surface contamination by extreme ultraviolet photoelectron spectroscopy technology[J]. IEEE Transactions on Plasma Science, 2009, 37:1490-1494. [23] HILLERET N, SCHEUERLEIN C, TABORELLI M. The secondary-electron yield of airexposed metal surfaces[J]. Appl. Physics a-Materials Science Processing, 2003, 76:1085-1091. [24] MALINOWSKI M E, STEINHAUS C, CLIFT W M, et al..Controlling contamination in Mo/Si multilayer mirrors by Si surface capping modifications[J]. SPIE, 2002, 4688:442-453. [25] CHEN J Q, LOUIS E, LEE C J, et al.. Detection and characterization of carbon contamination on EUV multilayer mirrors[J]. Optics Express, 2009, 17:16969-16979. [26] COLLINS R W. In-situ ellipsometry as a diagnostic of thin-film growth-studies of amorphous-carbon[J]. J. Vacuum Science Technology a-Vacuum Surfaces, 1989, Films 7:1378-1385. [27] VERHOEVEN J, LOS J. The influence of an electron beam on oxidation of polycrystalline nickel surfaces, monitored by disappearance potential spectroscopy(DAPS)[J]. Surface Science, 1976, 58:566-574. [28] KIRSCHNER J, STAIB P. Disappearance potential spectroscopy[J]. Appl. Phys. A:Mater. Sci. amp;Processing, 1975, 6:99-109. [29] STRELI C, WOBRAUSCHEK P, BAUER V, et al.. Total reflection X-ray fluorescence analysis of light elements with synchrotron radiation and special X-ray tubes[J]. Spectrochimica Acta Part B-Atomic Spectroscopy, 1997, 52:861-872. [30] STRELI C, AIGINGER H, WOBRAUSCHEK P. Light-element analysis with a new spectrometer for total-reflection X-ray-fluorescence[J]. Spectrochimica Acta Part B-Atomic Spectroscopy, 1993, 48:163-170. [31] STRELI C, WOBRAUSCHEK P, LADISICH W. Total-reflection X-ray-fluorescence analysis of light-elements under various excitation conditions[J]. X-Ray Spectrometry, 1995, 24:137-142. [32] STRELI C, WOBRAUSCHEK P, AIGINGER H. A new X-ray tube for efficient excitation of low-z-elements with total reflection X-ray-fluorescence analysis[J]. Spectrochimica Acta Part B-Atomic Spectroscopy, 1991, 46:1351-1359. [33] STRELI C, WOBRAUSCHEK P, SCHRAIK I. Comparison of SiLi detector and silicon drift detector for the determination of low Z elements in total reflection X-ray fluorescence[J]. Spectrochimica Acta Part B-Atomic Spectroscopy, 2004, 59:1211-1213. [34] SCHNEIDER D, SCHWARZ T. A photo acoustic method for characterizing thin films[J]. Surface Coatings Technology, 1997, 91:136-146. [35] VOREADES D. Secondary electron emission from thin carbon films[J]. Surface Science, 1976, 60:325-348.
  • 加载中
计量
  • 文章访问数:  1489
  • HTML全文浏览量:  271
  • PDF下载量:  621
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-10-11
  • 修回日期:  2013-12-13
  • 刊出日期:  2014-01-25

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!