Volume 11 Issue 5
Oct.  2018
Turn off MathJax
Article Contents
KANG Zhi-jun, ZHANG Hong-bo, YAN Xiao-chao, LANG Ye, BAI Zhen-ao, FAN Zhong-wei. 200 Hz high repetition frequency SBS pulse width compression experiment[J]. Chinese Optics, 2018, 11(5): 736-744. doi: 10.3788/CO.20181105.0736
Citation: KANG Zhi-jun, ZHANG Hong-bo, YAN Xiao-chao, LANG Ye, BAI Zhen-ao, FAN Zhong-wei. 200 Hz high repetition frequency SBS pulse width compression experiment[J]. Chinese Optics, 2018, 11(5): 736-744. doi: 10.3788/CO.20181105.0736

200 Hz high repetition frequency SBS pulse width compression experiment

Funds:

the National Research and Development Projects for Key Scientific Instruments ZDYZ2013-2

More Information
  • Corresponding author: FAN Zhong-wei, E-mail:fanzhongwei@aoe.ac.cn
  • Received Date: 09 Feb 2018
  • Rev Recd Date: 06 Mar 2018
  • Publish Date: 01 Oct 2018
  • Stimulated Brillouin scattering (SBS) pulse width compression is one of the important pathway to achieve high peak power and short pulse output. However, the current SBS pulse with compression is limited to 1~10 Hz low repetition frequency lasers, which limits the application of high repetition frequency short pulse lasers in the fields of laser radar, space debris detection, target imaging. Therefore, the experimental study of SBS pulse width compression at high repetition frequency is carried out. The main oscillation amplification laser with high repetition frequency is designed and the SBS secondary cascade pulse width compression and SBS oscillation amplification double pool pulse width compression experiments are carried out. Through SBS secondary cascade compression, the pulse width is compressed from ~32 ns to ~1.9 ns, and the pulse width compression ratio is up to 16 times. The SBS oscillation amplification double-cell structure realizes the pulse width from ~4 ns to 376 ps, and the pulse width compression ratio is up to 10 times. The experimental results show that no optical breakdown occurred in case of the ultra-clean closed SBS phase conjugation mirror when the output power of Stokes light reaches 50mJ, thus achieving SBS pulse width compression at a high repetition rate of 200 Hz.

     

  • loading
  • [1]
    窦银萍, 孙长凯, 林景全.激光等离子体极紫外光刻光源[J].中国光学, 2013, 6(1):20-33. http://www.chineseoptics.net.cn/CN/abstract/abstract8894.shtml

    DOU Y P, SUN C K, LIN J Q. Laser-produced plasma light source for extreme ultraviolet lithography[J]. Chinese Optics, 2013, 6(1):20-33.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract8894.shtml
    [2]
    孟庆季, 张续严, 周凌, 等.机载激光3D探测成像系统的关键技术[J].中国光学, 2011, 4(4):327-339. doi: 10.3969/j.issn.2095-1531.2011.04.004

    MENG Q J, ZHANG J Y, ZHOU L, et al.. Key technologies of airborne laser 3D detection imaging system[J]. Chinese Optics, 2011, 4(4):327-339.(in Chinese) doi: 10.3969/j.issn.2095-1531.2011.04.004
    [3]
    KMETIK V, FIEDOROWICZ H, ANDREEV A A, et al.. Reliable stimulated brillouin scattering compression of Nd:YAG laser pulses with liquid fluorocarbon for long-time operation at 10 Hz[J]. Applied Optics, 1998, 37(30):7085. doi: 10.1364/AO.37.007085
    [4]
    李秦川, 杨亚培, 刘爽, 等.相位共轭谐振腔改善激光器波前像差特性研究[J].光学与光电技术, 2013, 11(1):21-24. http://d.old.wanfangdata.com.cn/Periodical/gxygdjs201301006

    LI Q C, YANG Y P, LIU SH, et al.. Characteristics of phase conjugated resonator to improve the laser wavefront aberrations[J]. Optics & Optoelectronic Technology, 2013, 11(1):21-24.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxygdjs201301006
    [5]
    汪莎, 陈军, 童立新, 等.熔石英棒-光纤组合型相位共轭镜的研究[J].光学与光电技术, 2008, 6(1):5-7. doi: 10.3969/j.issn.1672-3392.2008.01.002

    WANG SH, CHEN J, TONG L X, et al.. Fused silica rod-fiber combined phase conjugation mirror[J]. Optics & Optoelectronic Technology, 2008, 6(1):5-7.(in Chinese) doi: 10.3969/j.issn.1672-3392.2008.01.002
    [6]
    DANE C B, NEUMAN W A, HACKEL L A. High-energy SBS pulse compression[J]. IEEE Journal of Quantum Electronics, 1994, 30(8):1907-1915. doi: 10.1109/3.301654
    [7]
    MITRA A, YOSHIDA H, FUJITA H, et al.. Sub nanosecond pulse generation by stimulated brillouin scattering using FC-75 in an integrated setup with laser energy up to 1.5 J[J]. Japanese Journal of Applied Physics, 2006, 45(3A):1607-1611. doi: 10.1143/JJAP.45.1607
    [8]
    OGINO J, MIYAMOTO S, MATSUYAMA T, et al. Two-stage optical parametric chirped-pulse amplifier using sub-nanosecond pump pulse generated by stimulated Brillouin scattering compression[J]. Applied Physics Express, 2014, 7(12):122702. doi: 10.7567/APEX.7.122702
    [9]
    TARASOV A A, CHU H. Subnanosecond Nd:YAG laser with multipass cell for SBS pulse compression[J]. Proc. of SPIE, 2017, 10082:100820Q. doi: 10.1117/12.2248355
    [10]
    YOSHIDA H, FUJITA H, NAKATSUKA M, et al.. A 160 ps pulse generation by stimulated Brillouin scattering-phase conjugation mirror at 1064 nm wavelength[C]//European Conference on Lasers and Electro-Optics 2009 and the European Quantum Electronics Conference. Cleo Europe-Eqec. IEEE, 2009: 1-1.
    [11]
    YOSHIDA H, HATAE T, FUJITA H, et al.. A high-energy 160-ps pulse generation by stimulated Brillouin scattering from heavy fluorocarbon liquid at 1064 nm wavelength.[J]. Optics Express, 2009, 17(16):13654-13662. doi: 10.1364/OE.17.013654
    [12]
    FRITSCHE H. Pulse compression and beam quality improvement of a single-frequency Nd:YAG MOPA system[J]. Proc. of SPIE, 2013, 8600:860005. doi: 10.1117/12.2002348
    [13]
    XU X, FENG C, DIELS J C. Optimizing sub-ns pulse compression for high energy application[J]. Optics Express, 2014, 22(11):13904. doi: 10.1364/OE.22.013904
    [14]
    FENG C, XU X, DIELS J C. High-energy sub-phonon lifetime pulse compression by stimulated Brillouin scattering in liquids[J]. Optics Express, 2017, 25:12421. doi: 10.1364/OE.25.012421
    [15]
    BAI Z, WANG Y, LU Z, et al.. High Energy, high compact single frequency hundred picoseconds laser based on stimulated brillouin scattering pulse compression[C]//Compact EUV & X-ray Light Sources, Long Beach, California, USA, 2016: JM7A.3.
    [16]
    ZHANG H, ZHU X, WANG Y, et al.. Generation of 360 ps laser pulse with 3 J energy by stimulated Brillouin scattering with a nonfocusing scheme[J]. Optics Express, 2015, 23(18):23318-28. doi: 10.1364/OE.23.023318
    [17]
    SHILOV A A, PASMANIK G A, KULAGIN O V, et al.. High-peak-power diode-pumped Nd:YAG laser with a Brillouin phase-conjugation-pulse[J]. Optics Letters, 2001, 26(20):1565-1567. doi: 10.1364/OL.26.001565
    [18]
    WANG Y, LÜ Z, GUO Q, et al.. A new circulating two-cell structure for stimulated Brillouin scattering phase conjugation mirrors with 1-J load and 10-Hz repetition rate[J]. Chinese Optics Letters, 2010, 8(11):1064-1066. doi: 10.3788/COL
    [19]
    WANG Y L, LU Z W, LI Y, et al.. Investigation on high-power load ability of stimulated Brillouin scattering phase conjugating mirror[J]. Applied Physics B, 2010, 98(2-3):391-395. doi: 10.1007/s00340-009-3805-4
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article views(2538) PDF downloads(170) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return