Volume 11 Issue 3
Jun.  2018
Turn off MathJax
Article Contents
SUN Rui, GAO Yin-jia, SHI Hai-bin. Advances in biological application of photo-crosslinking technique[J]. Chinese Optics, 2018, 11(3): 444-458. doi: 10.3788/CO.20181103.0444
Citation: SUN Rui, GAO Yin-jia, SHI Hai-bin. Advances in biological application of photo-crosslinking technique[J]. Chinese Optics, 2018, 11(3): 444-458. doi: 10.3788/CO.20181103.0444

Advances in biological application of photo-crosslinking technique

doi: 10.3788/CO.20181103.0444
Funds:

National Program on Key Basic Research Projects of China 2016YFC0101200

National Natural Science Foundation of China 21572153

Major projects of Natural Science Research in Universities in Jiangsu Province 15KJA310004

Science and Technology Plan of Suzhou City SYG201520

More Information
  • Corresponding author: SHI Hai-bin, E-mail:hbshi@suda.edu.cn
  • Received Date: 19 Jan 2018
  • Rev Recd Date: 13 Feb 2018
  • Publish Date: 01 Jun 2018
  • Photo-crosslinking technique is widely used in different research fields such as chemistry, biology, medicine and materials as a fast, simple and space-time controlled cross-linking tool. In this paper, the structure, classification and reaction mechanism of commonly used small-molecule photo-crosslinking groups are introduced in detail. The application of photo-crosslinking technique in biomedical fields is reviewed in detail, and the prospects for its application are assessed. Currently, most of the photo-crosslinking groups are only sensitive to ultraviolet and visible light, and have weak UV and visible light penetrating power, strong tissue absorption and scattering, which seriously limit the application of this technology in living system. Therefore, further research on the application of photo-crosslinking technology in biological systems and the development of new long-wavelength light-mediated crosslinking (such as near-infrared or far-infrared light) have important scientific significance for drug development and disease theranostics.

     

  • loading
  • [1]
    刑其毅, 徐瑞秋, 裴伟伟, 等.基础有机化学(第三版, 下册)[M].北京:高等教育出版社, 2005:712-746.

    XING Q Y, WU R Q, PEI W W, et al.. Basic Organic Chemistry[M]. Beijing:Higher Education Press, 2005:712-746.(in Chinese)
    [2]
    SINGH A, THORNTON E R, WESTHEIMER F H. The photolysis of diazoactylchymotrypsin[J]. Journal of Biological Chemistry, 1962, 237(9):3006-3008.
    [3]
    SUMRANJIT J, CHUNG S J. Recent advances in target characterization and identification by photoaffinity probes[J]. Molecules, 2013, 18(9):10425-40451. doi: 10.3390/molecules180910425
    [4]
    XIA Y, PENG L. Photoactivatable lipid probes for studying biomembranes by photoaffinity labeling[J]. Chemical Reviews, 2013, 113(10):7880-7929. doi: 10.1021/cr300419p
    [5]
    HATANAKA Y. Development and leading-edge application of innovative photoaffinity labeling[J]. Chemical & Pharmaceutical Bulletin, 2015, 46(1):1-12.
    [6]
    DAS J. Aliphatic diazirines as photoaffinity probes for proteins:recent developments[J]. Chemical Reviews, 2011, 111(8):4405-4417. doi: 10.1021/cr1002722
    [7]
    ITO Y. Photoimmobilization for microarrays[J]. Biotechnology Progress, 2006, 22(4):924-932. doi: 10.1021/bp060143a
    [8]
    ZHAO C W, ZHANG Z D, YANG W T. A remote photochemical reaction for surface modification of polymeric substrate[J]. Journal of Polymer Science Part A-polymer Chemistry, 2012, 50(18):3698-3702. doi: 10.1002/pola.v50.18
    [9]
    LAWRENCE E J, WILDGOOSE G G, ALDOUS L, et al.. 3-aryl-3-(trifluoromethyl)diazirines as versatile photoactivated "linker" molecules for the improved covalent modification of graphitic and carbon nanotube surfaces[J]. Chemistry of Materials, 2011, 23(16):3740-3751. doi: 10.1021/cm201461w
    [10]
    孟想, 杨蕊竹, 刘东旭, 等.紫外固化型聚合物水凝胶的周期图案形成及其调控[J].中国光学, 2012, 5(4):436-443. http://www.chineseoptics.net.cn/CN/abstract/abstract8772.shtml

    MENG X, YANG R ZH, LIU D X, et al.. Formation and adjustment of cycle pattern of UV-curable polymeric hydeogel[J]. Chinese Optics, 2012, 5(4):436-443.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract8772.shtml
    [11]
    刘东旭, 夏虹, 孙允陆, 等.飞秒激光直写生物凝胶模板原位合成纳米粒子[J].中国光学, 2014, 7(4):608-615. http://www.chineseoptics.net.cn/CN/abstract/abstract9150.shtml

    LIU D X, XIA H, SUN Y L, et al.. Femtosecond laser direct writing bio-gel template for in situ synthesis of nanoparticles[J]. Chinese Optics, 2014, 7(4):608-615.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9150.shtml
    [12]
    FLEMING S A. Chemical reagents in photoaffinity labeling[J]. Tetrahedron, 1995, 51(46):12479-12520. doi: 10.1016/0040-4020(95)00598-3
    [13]
    BORDEN W T, GRITSAN N P, HADAD C M, et al.. The interplay of theory and experiment in the study of phenylnitrene[J]. Accounts of Chemical Research, 2000, 33(11):765-771. doi: 10.1021/ar990030a
    [14]
    PLATZ M S. Comparison of phenylcarbene and phenyinitrene[J]. Accounts of Chemical Research, 1995, 28(12):487-492. doi: 10.1021/ar00060a004
    [15]
    BLENCOWE A, HAYES W. Development and application of diazirine in biological and synthetic macromolecular systems[J]. Soft Matter, 2005, 1(3):178-205. doi: 10.1039/b501989c
    [16]
    AMBROZ H B, KEMP T J. Aryl cation-new light on old intermediates[J]. Chemical Society Reviews, 1979, 8(3):353-365. doi: 10.1039/cs9790800353
    [17]
    KOTZYBA-HIBERT F, KAPFER I, GOELDNER M. Recent trends in photoaffinity labeling[J]. Angewandte Chemie International Edition, 1995, 34(12):1296-1312. doi: 10.1002/(ISSN)1521-3773
    [18]
    DORMAN G, PRESTWICH G D. Benzophenone photophores in biochemistry[J]. Biochemistry, 1994, 33(19):5661-5673. doi: 10.1021/bi00185a001
    [19]
    DORMAN G, PRESTWICH G D, ELLIOTT J T, et al.. Benzophenone photoprobes for phosphoinositides, peptides and drugs[J]. Photochem Photobiol, 1997, 65(22):222-234.
    [20]
    AGARWAL S, BELL C M, ROTHBART S B, et al.. AMP-activated Protein Kinase(AMPK) Control of mTORC1 Is p53-and TSC2-independent in pemetrexed-treated carcinoma cells[J]. Journal of Biological Chemistry, 2015, 290(46):27473-27486. doi: 10.1074/jbc.M115.665133
    [21]
    BRODIE N I, MAKEPEACE K A T, PETROTCHENKO E V, et al.. Isotopically-coded short-range hetero-bifunctional photo-reactive crosslinkers for studying protein structure[J]. Journal of Proteomics, 2015, 118:12-20. doi: 10.1016/j.jprot.2014.08.012
    [22]
    YABE T, HOSODA-YABE R, SAKAI H, et al.. Development of a photoreactive probe-based system for detecting heparin[J]. Analytical Biochemistry, 2015, 472:1-6. doi: 10.1016/j.ab.2014.11.007
    [23]
    GUO H J, LI Z Q. Developments of bioorthogonal handle-containing photo-crosslinkers for photoaffinity labeling[J]. Med. Chem. Commun., 2017, 8(8):1585-1591. doi: 10.1039/C7MD00217C
    [24]
    FUNG S K, ZOU T T, CAO B, et al.. Cyclometalated gold(Ⅲ) complexes containing N-Heterocyclic carbene ligands engage multiple anti-cancer molecular targets[J]. Angewandte Chemie International Edition, 2017, 56(14):3892-3896. doi: 10.1002/anie.201612583
    [25]
    SCHWANSTECHER M, LÖSER S, CHUDZIAK F, et al.. Identification of a 38-kDa high affinity sulfonylurea-binding peptide in insulin-secreting cells and cerebral cortex[J]. Journal of Biological Chemistry, 1994, 269(27):17768-17771. http://cn.bing.com/academic/profile?id=cf1479bf74421fb56fa1e457e02a6b59&encoded=0&v=paper_preview&mkt=zh-cn
    [26]
    FRICK W, BAUERSCH FER A, BAUER J, et al.. Synthesis of a biotin-tagged photoaffinity probe of 2-azetidinone cholesterol absorption inhibitors[J]. Bioorganic & Medicinal Chemistry, 2003, 11(8):1639-1642. http://cn.bing.com/academic/profile?id=6952531eeab909814cc395b1535c79ac&encoded=0&v=paper_preview&mkt=zh-cn
    [27]
    ROTH M, CHEN W Y. Sorting out functions of sirtuins in cancer[J]. Oncogene, 2014, 33(13):1609-1620. doi: 10.1038/onc.2013.120
    [28]
    SEIFERT T, MALO M, LENGQVIST J, et al.. Identification of the binding site of chroman-4-one-based sirtuin 2-selective inhibitors using photoaffinity labeling in combination with tandem mass spectrometry[J]. Journal of Medicinal Chemistry, 2016, 59(23):10794-10799. doi: 10.1021/acs.jmedchem.6b01117
    [29]
    LIU K, SHI H B, XIAO H G, et al.. Functional profiling, identification and inhibition of plasmepsins in intraerythrocytic malaria parasites[J]. Angewandte Chemie International Edition, 2009, 48(44):8293-8297. doi: 10.1002/anie.200903747
    [30]
    SHI H B, LIU K, XU A, et al.. Small molecule microarray-facilitated screening of affinity-based probes(AfBPs) for γ-secretase[J]. Chemical Communications, 2009, 33(33):5030-5032. http://cn.bing.com/academic/profile?id=a3de8353cfadaba8314c03dd01b9bdf5&encoded=0&v=paper_preview&mkt=zh-cn
    [31]
    SHI H B, ZHANG C J, CHEN G Y, et al.. Cell-based proteome profiling of potential dasatinib targets by use of affinity-based probes[J]. Journal of the American Chemical Society, 2012, 134(6):3001-3014. doi: 10.1021/ja208518u
    [32]
    SHI H B, CHENG X M, YAO S Q, et al.. Proteome profiling reveals potential cellular targets of staurosporine using a clickable cell-permeable probe[J]. Chemical Communications, 2011, 47(40):11306-11308. doi: 10.1039/c1cc14824a
    [33]
    LI Z Q, HAO P L, LI L, et al.. Design and synthesis of minimalist terminal alkyne-containing diazirine photo-crosslinkers and their incorporation into kinase inhibitors for cell-and tissue-based proteome profiling[J]. Angewandte Chemie International Edition, 2013, 52(33):8551-8556. doi: 10.1002/anie.201300683
    [34]
    LI Z Q, WANG D Y, LI L, et al.. "Minimalist" cyclopropene-containing photo-cross-linkers suitable for live-cell imaging and affinity-based protein labeling[J]. Journal of the American Chemical Society, 2014, 136(28):9990-9998. doi: 10.1021/ja502780z
    [35]
    LI Z Q, QIAN L H, YAO S Q, et al.. Tetrazole photoclick chemistry:reinvestigating its suitability as a bioorthogonal reaction and potential applications[J]. Angewandte Chemie International Edition, 2016, 55(6):2002-2006. doi: 10.1002/anie.201508104
    [36]
    YU S H, BOYCE M, WANDS A M, et al.. Metabolic labeling enables selective photocrosslinking of O-GlcNAc-modified proteins to their binding partners[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(13):4834-4839. doi: 10.1073/pnas.1114356109
    [37]
    KRISHNAMURTHY M, DUGAN A, NWOKOYE A, et al.. Caught in the act:covalent crosslinking captures activator-coactivator interactions in vivo[J]. ACS Chemical Biology, 2016, 6(12):1321-1326. http://cn.bing.com/academic/profile?id=31b2f23a05790eebfbae77e5e0ad513b&encoded=0&v=paper_preview&mkt=zh-cn
    [38]
    SONG C X, HE C. Bioorthogonal labeling of 5-hydroxymethylcytosine in genomic DNA and diazirine-based DNA photo-cross-linking probes[J]. Accounts of Chemical Research, 2011, 44(9):709-717. doi: 10.1021/ar2000502
    [39]
    AND Y T, KOHLER J J. Photoactivatable crosslinking sugars for capturing glycoprotein interactions[J]. Journal of the American Chemical Society, 2008, 130(11):3278-3279. doi: 10.1021/ja7109772
    [40]
    BOND M R, WHITMAN C M, KOHLER J J. Metabolically incorporated photocrosslinking sialic acid covalently captures a ganglioside-protein complex[J]. Molecular Biosystems, 2010, 6(10):1796-1799. doi: 10.1039/c0mb00069h
    [41]
    YU D, WOWOR A J, COLE J L, et al.. Defining the Escherichia coli SecA dimer interface residues through in vivo site-specific photo-cross-linking[J]. Journal of Bacteriology, 2013, 195(12):2817-2825. doi: 10.1128/JB.02269-12
    [42]
    ZHANG M, LIN S, SONG X, et al.. A genetically incorporated crosslinker reveals chaperone cooperation in acid resistance[J]. Nature Chemical Biology, 2011, 7(10):671-677. doi: 10.1038/nchembio.644
    [43]
    LIN S, HE D, LONG T, et al.. Genetically encoded cleavable protein photo-cross-linker[J]. Journal of the American Chemical Society, 2014, 136(34):11860-11863. doi: 10.1021/ja504371w
    [44]
    YANG Y, SONG H P, HE D, et al.. Genetically encoded protein photocrosslinker with a transferable mass spectrometry-identifiable label[J]. Nature Communications, 2016, DOI: 10.1038/ncomms12299.
    [45]
    YAN H, ZHONG G, X U G, et al.. Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus[J]. Elife, 2012, 1(1):e00049-e00049. http://cn.bing.com/academic/profile?id=305aba0d2c29d37474fb444fc26914bc&encoded=0&v=paper_preview&mkt=zh-cn
    [46]
    SHIGDEL U K, ZHANG J L, HE C. Diazirine-based DNA photo-cross-linking probes for the study of protein DNA interactions[J]. Angewandte Chemie International Edition, 2008, 47(1):90-93. doi: 10.1002/(ISSN)1521-3773
    [47]
    QIU Z H, LU L H, JIAN X, HE C. A diazirine-based nucleoside analogue for efficient DNA interstrand photocross-linking[J]. Journal of the American Chemical Society, 2008, 130(44):14398-14399. doi: 10.1021/ja805445j
    [48]
    NAKAMOTO K, UENO Y. Diazirine-containing RNA photo-cross-linking probes for capturing microRNA targets[J]. The Journal of Organic Chemistry, 2014, 79(6):2463-2472. doi: 10.1021/jo402738t
    [49]
    YAN M D, REN J. Covalent immobilization of ultrathin polymer films by thermal activation of perfluorophenyl azide[J]. Chemistry of Materials, 2004, 16(9):1627-1632. doi: 10.1021/cm034921v
    [50]
    LIU L, ENGELHARD M H, YAN M D. Surface and interface control on photochemically initiated immobilization[J]. Journal of the American Chemical Society, 2006, 128(43):14067-14072. doi: 10.1021/ja062802l
    [51]
    LIU L H, YAN M D. Functionalization of pristine graphene with perfluorophenyl azides[J]. Journal of Materials Chemistry, 2011, 21(10):3273-3276. doi: 10.1039/c0jm02765k
    [52]
    PARK J, JAYAWARDENA S N, CHEN X, et al.. A general method for the fabrication of grapheme-nanoparticle hybrid material[J]. Chemical Communications, 2015, 51(14):2882-2885. doi: 10.1039/C4CC07936A
    [53]
    ISMAILI H, LEE S, WORKENTIN M S. Diazirine-modified gold nanoparticle:template for efficient photoinduced interfacial carbene insertion reactions[J]. Langmuir, 2010, 26(18):14958-14964. doi: 10.1021/la102621h
    [54]
    ISMAILI H, LAGUGNE-LABARTHET F, WORKENTIN M S. Covalently assembled gold nanoparticle-carbon nanotube hybrids via a photoinitiated carbene addition reaction[J]. Chemistry of Materials, 2011, 23(6):1519-1525. doi: 10.1021/cm103284g
    [55]
    ISMAILI H, WORKENTIN M S. Covalent diamond gold nanojewel hybrids via photochemically generated carbenes[J]. Chemical Communications, 2011, 47(27):7788-7790. doi: 10.1039/c1cc12125a
    [56]
    GHIASSIAN S, ISMAILI H, LUBBOCK BRETT D W, et al.. Photoinduced carbene generation from diazirine modified task specific phosphonium salts to prepare robust hydrophobic coatings[J]. Langmuir, 2012, 28(33):12326-12333. doi: 10.1021/la301975u
    [57]
    GHIASSIAN S, BIESINGER M C, WORKENTIN M S. Synthesis of small water-soluble diazirine-functionalized gold nanoparticles and their photochemical modification[J]. Canadian Journal of Chemistry, 2015, 93(1):98-105. doi: 10.1139/cjc-2014-0287
    [58]
    SUN R, YIN L, ZHANG S H, et al.. Simple light-triggered fluorescent labeling of silica nanoparticles for cellular imaging applications[J]. Chemistry-A European Journal, 2017, 23(56):13893-13896. doi: 10.1002/chem.201703653
    [59]
    BAN Q F, BAI T, DUAN X, et al.. Noninvasive photothermal cancer therapy nanoplatforms via integrating nanomaterials and functional polymers[J]. Biomaterials Science, 2017, 5(2):190-210. doi: 10.1039/C6BM00600K
    [60]
    MIESZAWSKA A J, MULDER W J M, FAYAD Z A, et al.. Multifunctional gold nanoparticles for diagnosis and therapy of disease[J]. Molecular Pharmaceutics, 2013, 10(3):831-847. doi: 10.1021/mp3005885
    [61]
    李欣远, 纪穆为, 王虹智, 等.近红外光热转换纳米晶研究进展[J].中国光学, 2017, 10(5):541-554. http://www.chineseoptics.net.cn/CN/abstract/abstract9545.shtml

    LI X Y, JI M W, WANG H ZH, et al.. Research progress of near-infrared photothermal conversion nanocrystals[J]. Chinese Optics, 2017, 10(5):541-554.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9545.shtml
    [62]
    CHENG X J, SUN R, YIN L, et al.. Light-triggered assembly of gold nanoparticles for photothermal therapy and photoacoustic imaging of tumors in vivo[J]. Advanced Materials, 2017, DOI: 10.1002/adma.201604894.
    [63]
    COYNE C P, JONES T, BEAR R. Synthesis of a covalent epirubicin-(C3-amide)-anti-HER2/neu immunochemotherapeutic utilizing a UV-photoactivated anthracycline intermediate[J]. Cancer Biotherapy and Radiopharmaceuticals, 2012, 27(1):41-55. doi: 10.1089/cbr.2011.1097
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article views(5965) PDF downloads(820) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return