Volume 11 Issue 3
Jun.  2018
Turn off MathJax
Article Contents
YU Shu-juan, CHEN Kuan, WANG Feng, ZHU Yong-fei. Synthesis of chitosan-based polymer carbon dots fluorescent materials and application of self-assembled drug-loading[J]. Chinese Optics, 2018, 11(3): 420-430. doi: 10.3788/CO.20181103.0420
Citation: YU Shu-juan, CHEN Kuan, WANG Feng, ZHU Yong-fei. Synthesis of chitosan-based polymer carbon dots fluorescent materials and application of self-assembled drug-loading[J]. Chinese Optics, 2018, 11(3): 420-430. doi: 10.3788/CO.20181103.0420

Synthesis of chitosan-based polymer carbon dots fluorescent materials and application of self-assembled drug-loading

Funds:

Natural Science Fund of Guangxi Province of China 2016GXNSFAA380203

More Information
  • Corresponding author: YU Shu-juan, E-mail:ysj2007@126.com
  • Received Date: 11 Jan 2018
  • Rev Recd Date: 09 Feb 2018
  • Publish Date: 01 Jun 2018
  • Fluorescent carbon dots have the advantages of good chemical stability, low toxicity, and surface functionalization, which has caused concern. In recent years, polymer carbon dots synthesize by polymer polysaccharides have become a new research hotspot. In this paper, a chitosan-based fluorescent polymer carbon dot material is synthesized by hydrothermal method and used for drug-loading research. We choose chitosan-graft-polyethylene glycol monomethyl ether and citric acid derivatives as the carbon sources for the carbon dots, because chitosan and polyethylene glycol are both a carbon source for carbon dots and a passivation reagent for carbon dots. Then the quantum yield of the polymeric carbon dots is increased. Polymer carbon dots can also retain the molecular structure of polyethylene glycol and chitosan, providing favorable conditions for its application in drug loading. The structural characterization is performed on P(CS-g-mPEG-CA)CDs by IR, UV, X-ray diffraction, photoelectron spectroscopy, transmission electron microscopy and photoluminescence spectra and pH stability test is carried out. The results show that the synthesized P(CS-g-mPEG-CA)CDs has higher fluorescence quantum yield(66.81%), longer fluorescence lifetime(15.247 ns), and better pH stability. Using Doxorubicin as a model drug, a load study was conducted using this polymer carbon dot. The results show that if the degree of substitution of mPEG is 11.9%, the maximum loading rate of polymer carbon dots is 51.3% and the maximum drug release rate is 28.7%. In addition, we also found that drug loading and release could be controlled by the grafting rate of mPEG. In addition, the cytotoxicity of polymer carbon dots on nasopharyngeal carcinoma cells(CNE-2) is evaluated using an MTT assay. The study shows that there is no obvious cytotoxicity of blank P(CS-g-mPEG-CA)CDs, and that the survival rate of CNE-2 cells decreases with the increase of drug-loaded micelles. The results show that the P(CS-g-mPEG-CA)CDs have a certain application prospect in the aspects of fluorescence labeling, drug delivery, fluorescent tracer system and controlled release.

     

  • loading
  • [1]
    SUN Y P, ZHOU B, LIN Y, et al.. Quantum-sized carbon dots for bright and colorful photoluminescence[J]. Journal of the American Chemical Society, 2006, 128(24):7756-7762. doi: 10.1021/ja062677d
    [2]
    BAKER S N, BAKER G A. Luminescent carbon nanodots:emergent nanolights[J]. Angewandte Chemie International Edition, 2010, 49:6726-6744. doi: 10.1002/anie.200906623
    [3]
    NⅡNO S, TAKESHITA S, ISO Y, et al.. Influence of chemical states of doped nitrogen on photoluminescence intensity of hydrothermally synthesized carbon dots[J]. Journal of Luminescence, 2016, 180:123-131. doi: 10.1016/j.jlumin.2016.08.021
    [4]
    娄庆, 曲松楠.基于超级碳点的水致荧光"纳米炸弹"[J].中国光学, 2015, 8(1):91-98. http://www.chineseoptics.net.cn/CN/abstract/abstract9260.shtml

    LOU Q, QU S N. Water triggered luminescent'nano-bombs'based on supra-carbon-nanodots[J]. Chinese Optics, 2015, 8(1):91-98.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9260.shtml
    [5]
    HAN S, ZHANG H, XIE Y J, et al.. Application of cow milk-derived carbon dots/Ag NPs composite as the antibacterial agentn[J]. Applied Surface Science, 2015, 328:368-373. doi: 10.1016/j.apsusc.2014.12.074
    [6]
    WANG C X, XU Z Z, CHENG H, et al.. A hydrothermal route to water-stable luminescent carbon dots as nanosensors for pH and temperature[J]. Carbon, 2015, 82:87-95. doi: 10.1016/j.carbon.2014.10.035
    [7]
    BARUAH U, GOGOI N, MAJUMDAR G, et al.. β-Cyclodextrin and calix[4] arene-25, 26, 27, 28-tetrol capped carbon dots for selective and sensitive detection of fluoride[J]. Carbohydrate Polymers, 2015, 117:377-383. doi: 10.1016/j.carbpol.2014.09.083
    [8]
    WANG W, CHENG L, LIU W. Biological applications of carbon dots[J]. Science China Chemistry, 2014, 57:522-539. doi: 10.1007/s11426-014-5064-4
    [9]
    YAO J, YANG M, DUAN Y. Chemistry, biology, and medicine of fluorescent nanomaterials and related systems:new insights into biosensing, bioimaging, genomics, diagnostics, and therapy[J]. Chemical Reviews, 2014, 114:6130-6148. doi: 10.1021/cr200359p
    [10]
    XU X W, ZHANG K, ZHAO L, et al.. Aspirin-based Carbon dots, a good biocompatibility of material applied for bioimaging and anti-inflammation[J]. ACS Appl. Mater. Interfaces, 2016, 8:32706-32716. doi: 10.1021/acsami.6b12252
    [11]
    TAO S Y, SONG Y B, ZHU S J, et al.. A new type of polymer carbon dots with high quantum yield:from synthesis to investigation on fluorescence mechanism[J]. Polymer, 2017, 116:472-478. doi: 10.1016/j.polymer.2017.02.039
    [12]
    SONG G, LIN Y N, WANG H L. Strong fluorescence of poly(N-vinylpyrrolidone) and its oxidized hydrolysate[J]. Macromolecular Rapid Communications, 2015, 36:278-285. doi: 10.1002/marc.201400516
    [13]
    ZHU S J, SONG Y B, SHAO J R, et al.. Non-conjugated polymer dots with crosslink-enhanced emission in the absence of fluorophore units[J]. Angewandte Chemie International Edition, 2015, 47:14626-14637. http://cn.bing.com/academic/profile?id=8e6e271cc5fb19bc846db8dc139ff7c9&encoded=0&v=paper_preview&mkt=zh-cn
    [14]
    YANG Y H, CUI J H, ZHENG M T, et al.. One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan[J]. Chemical Communications, 2012, 48:380-382. doi: 10.1039/C1CC15678K
    [15]
    XIAO D L, YUAN D H, HE H, et al.. Microwave-assisted one-step green synthesis of amino-functionalized fluorescent carbon nitride dots from chitosan[J]. Luminescence, 2013, 28:612-615. doi: 10.1002/bio.v28.4
    [16]
    WANG, Y F, WANG X, GENG Z H, et al.. Electrodeposition of a carbon dots/chitosan composite produced by a simple in situ method and electrically controlled release of carbon dots[J]. Journal of Materials Chemistry B, 2015, 3:7511-7517. doi: 10.1039/C5TB01051A
    [17]
    ZU Y X, BI J R, YAN H P, et al.. Nanostructures derived from starch and chitosan for fluorescence bio-imaging[J]. Nanomaterials, 2016, 6:130-143. doi: 10.3390/nano6070130
    [18]
    TANG Z J, LI G K, HU Y L. Advances in preparation and applications in quantitative analysis of nitrogen-doped carbon dots[J]. Progress in Chemistry, 2016, 28:1455-1461. http://cn.bing.com/academic/profile?id=e9000fef9c5aefc6345ee55badfaca52&encoded=0&v=paper_preview&mkt=zh-cn
    [19]
    LIN Y, ZHANG L Z, YAO W, et al.. Water-soluble chitosan-quantum dot hybrid nanospheres toward bioimaging and biolabeling[J]. ACS Applied Materials & Interfaces, 2011, 3:995-1002. http://cn.bing.com/academic/profile?id=693f8e0a4ecc3998f81c21e481a6590d&encoded=0&v=paper_preview&mkt=zh-cn
    [20]
    WADAJKAR A S, KADAPURE T, ZHANG Y, et al.. Dual-imaging enabled cancer-targeting nanoparticles[J]. Advanced Healthcare Materials, 2012, 1:450-456. doi: 10.1002/adhm.201100055
    [21]
    CHEN G, WANG L W, CORDIE T, et al.. Multi-functional self-fluorescent unimolecular micelles for tumor-targeted drug delivery and bioimaging[J]. Biomaterials, 2015, 47:41-50. doi: 10.1016/j.biomaterials.2015.01.006
    [22]
    WU D Q, LU B, CHANG C, et al.. Galactosylated fluorescent labeled micelles as a liver targeting drug carrier[J]. Biomaterials, 2009, 30:1363-1371. doi: 10.1016/j.biomaterials.2008.11.027
    [23]
    LEE Y K, HONG S M, KIM J S, et al.. Encapsulation of CdSe/ZnS quantum dots in poly(ethylene glycol)-Poly(D, L-lactide) micelle for biomedical imaging and detection[J]. Macromolecular Research, 2007, 15:330-336. doi: 10.1007/BF03218795
    [24]
    SILL K, EMRICK T. Nitroxide-mediated radical polymerization from CdSe nanoparticles micelles[J]. Chemistry of Materials, 2004, 16:1240-1243. doi: 10.1021/cm035077b
    [25]
    CHOWDHURI A R, TRIPATHY S, HALDAR C, et al.. Single step synthesis of carbon dot embedded chitosan nanoparticles for cell imaging and hydrophobic drug delivery[J]. Journal of Materials Chemistry B, 2015, 3:9122-9131. doi: 10.1039/C5TB01831E
    [26]
    RADHAKUMARY C, NAIR P D, NAIR C P R, et al.. Chitosan-comb-graft-polyethylene glycol monomethacrylate-synthesis, characterization, and evaluation as a biomaterial for hemodialysis applications[J]. Journal of Applied Polymer Science, 2009, 114:2873-2886. doi: 10.1002/app.v114:5
    [27]
    KONO H, TESHIROGI T. Cyclodextrin-grafted chitosan hydrogels for controlled drug delivery[J]. International Journal of Biological Macromolecules, 2015, 72:299-308. doi: 10.1016/j.ijbiomac.2014.08.030
    [28]
    GEDDA G, LEE C Y, LIN Y C, et al.. Green synthesis of carbon dots from prawn shells for highly selective and sensitive detection of copper ions[J]. Sensors and Actuators B:Chemical, 2016, 224:396-403. doi: 10.1016/j.snb.2015.09.065
    [29]
    FU D J, JIN Y, XIE M Q, et al.. Preparation and characterization of mPEG grafted chitosan micelles as 5-fluorouracil carriers for effective anti-tumor activity[J]. Chinese Chemical Letters, 2014, 25:1435-1440. doi: 10.1016/j.cclet.2014.06.027
    [30]
    PAPADIMITRIOU S A, ACHILIAS D S, BIKIARIS D N. Chitosan-g-PEG nanoparticles ionically crosslinked with poly(glutamic acid) and tripolyphosphate as protein delivery systems[J]. International Journal of Pharmaceutics, 2012, 430:318-327. doi: 10.1016/j.ijpharm.2012.04.004
    [31]
    LI X Y, KONG X Y, SHI S, et al.. Biodegradable MPEG-g-chitosan and methoxy poly(ethylene glycol)-b-poly(e-caprolactone) composite films:Part 1.preparation and characterization[J]. Carbohydrate Polymers, 2010, 79:429-436. doi: 10.1016/j.carbpol.2009.08.032
    [32]
    ZHANG Y, WANG Y L, FENG X T, et al.. Effect of reaction temperature on structure and fluorescence properties of nitrogen-doped carbon dots[J]. Applied Surface Science, 2016, 387:1236-1246. doi: 10.1016/j.apsusc.2016.07.048
    [33]
    YANG S W, SUN, J, LI X B, et al.. Large-scale fabrication of heavy doped carbon quantum dots with tunable-photoluminescence and sensitive fluorescence detection[J]. Journal of Materials Chemistry A, 2014, 2:8660-8667. doi: 10.1039/c4ta00860j
    [34]
    ARDEKANI S M, DEHGHANI A, HASSAN M, et al.. Two-photon excitation triggers combined chemo-photothermal therapy via doped carbon nanohybrid dots for effective breast cancer treatment[J]. Chemical Engineering Journal, 2017, 330:651-662. doi: 10.1016/j.cej.2017.07.165
    [35]
    FAN R J, SUN Q, ZHANG L, et al.. Photoluminescent carbon dots directly derived from polyethylene glycol and their application for cellular imaging[J]. Carbon, 2014, 71:87-93. doi: 10.1016/j.carbon.2014.01.016
    [36]
    REMANT K B C, THAPA B, XU P S. pH and redox dual responsive nanoparticle for nuclear targeted drug delivery[J]. Molecular Pharmaceutics, 2012, 9:2719-2729. doi: 10.1021/mp300274g
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article views(3717) PDF downloads(318) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return