Volume 11 Issue 3
Jun.  2018
Turn off MathJax
Article Contents
ZAN Ming-hui, RAO Lang, XIE Wei, ZHU Dao-ming, QIE Xing-wang, DONG Wen-fei, LIU Wei. Advances in cell membrane-camouflaged nano-carrier for photothermal therapy[J]. Chinese Optics, 2018, 11(3): 392-400. doi: 10.3788/CO.20181103.0392
Citation: ZAN Ming-hui, RAO Lang, XIE Wei, ZHU Dao-ming, QIE Xing-wang, DONG Wen-fei, LIU Wei. Advances in cell membrane-camouflaged nano-carrier for photothermal therapy[J]. Chinese Optics, 2018, 11(3): 392-400. doi: 10.3788/CO.20181103.0392

Advances in cell membrane-camouflaged nano-carrier for photothermal therapy

Funds:

National Natural Science Foundation of China 61474084

More Information
  • Corresponding author: DONG Wen-fei; LIU Wei, E-mail:wliu@whu.edu.cn
  • Received Date: 11 Jan 2018
  • Rev Recd Date: 08 Mar 2018
  • Publish Date: 01 Jun 2018
  • Nanocarriers have always been an important research area of the accurate tumor therapy. As a novel drug carrier platform, cell membrane-camouflaged nano drug carriers have become a research hot area in the drug delivery field in recent years. This paper reviews the latest advances in the application for photothermal therapy of different cell membrane-camouflaged nano-carriers. Combining cell membranes with nanomaterials can further improve the research of nanocarriers and have important implications for the development of related fields.

     

  • loading
  • [1]
    MITRAGOTRI S, BURKE PA, LANGER R. Overcoming the challenges in administering biopharmaceuticals:formulation and delivery strategies[J]. Nature Reviews Drug Discovery, 2014, 13(9):655-672. doi: 10.1038/nrd4363
    [2]
    MATSUMURA Y, MAEDA H. A new concept for macromolecular therapeutics in cancer chemotherapy:mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs[J]. Cancer Research, 1986, 46(12 Part 1):6387-6392. http://cn.bing.com/academic/profile?id=bf77b5dc058644475ce5c6ff405be910&encoded=0&v=paper_preview&mkt=zh-cn
    [3]
    XIE J, XU C, KOHLER N, et al.. Controlled PEGylation of monodisperse Fe3O4 nanoparticles for reduced non-specific uptake by macrophage cells[J]. Advanced Materials, 2007, 19(20):3163-3166. doi: 10.1002/adma.200701975
    [4]
    PETROS R A, DESIMONE J M. Strategies in the design of nanoparticles for therapeutic applications[J]. Nature Reviews Drug Discovery, 2010, 9:615. doi: 10.1038/nrd2591
    [5]
    LIU Z, ROBINSON J T, SUN X, et al.. PEGylated nanographene oxide for delivery of water-Insoluble cancer drugs[J]. Journal of the American Chemical Society, 2008, 130(33):10876-10877. doi: 10.1021/ja803688x
    [6]
    ZHANG C Y, YEH H C, KUROKI M T, et al.. Single-quantum-dot-based DNA nanosensor[J]. Nature Materials, 2005, 4(11):826-831. doi: 10.1038/nmat1508
    [7]
    KNOP K, HOOGENBOOM R, FISCHER D, et al.. Poly(ethylene glycol) in drug delivery:pros and cons as well as potential alternatives[J]. Angewandte Chemie International Edition, 2010, 49(36):6288-6308. doi: 10.1002/anie.200902672
    [8]
    WILHELM S, TAVARES AJ, DAI Q, et al.. Analysis of nanoparticle delivery to tumours[J]. Nature Reviews Materials, 2016, 1(5):16014. doi: 10.1038/natrevmats.2016.14
    [9]
    WANG S, HUANG P, CHEN X. Hierarchical targeting strategy for enhanced tumor tissue accumulation/retention and cellular internalization[J]. Advanced Materials, 2016, 28(34):7340-7364. doi: 10.1002/adma.201601498
    [10]
    HUANG C, YANG G, HA Q, et al. Multifunctional "smart" particles engineered from live immunocytes:toward capture and release of cancer cells[J]. Advanced Materials, 2015, 27(2):310-313. doi: 10.1002/adma.v27.2
    [11]
    TANG R, MOYANO DF, SUBRAMANI C, et al.. Rapid coating of surfaces with functionalized nanoparticles for regulation of cell behavior[J]. Advanced Materials, 2014, 26(20):3310-3314. doi: 10.1002/adma.v26.20
    [12]
    FANG R H, JIANG Y, FANG J C, et al.. Cell membrane-derived nanomaterials for biomedical applications[J]. Biomaterials, 2017, 128(Supplement C):69-83. http://cn.bing.com/academic/profile?id=e3696cec8291b081c454f71e90dbcd26&encoded=0&v=paper_preview&mkt=zh-cn
    [13]
    SUN H P, SU J H, MENG Q S, et al.. Cancer cell membrane-coated gold nanocages with hyperthermia-triggered drug release and homotypic target inhibit growth and metastasis of breast cancer[J]. Advanced Functional Materials, 2017, 27(3):1604300-n/a. doi: 10.1002/adfm.v27.3
    [14]
    SUN H, SU J, MENG Q, et al.. Cancer-cell-biomimetic nanoparticles for targeted therapy of homotypic tumors[J]. Advanced Materials, 2016, 28(43):9581-9588. doi: 10.1002/adma.201602173
    [15]
    GAO W, HU C-M J, FANG R H, et al.. Surface functionalization of gold nanoparticles with red blood cell membranes[J]. Advanced Materials, 2013, 25(26):3549-3553. doi: 10.1002/adma.201300638
    [16]
    KROLL AV, FANG RH, ZHANG L. Biointerfacing and applications of cell membrane-coated nanoparticles[J]. Bioconjugate Chemistry, 2017, 28(1):23-32. doi: 10.1021/acs.bioconjchem.6b00569
    [17]
    LI S-Y, QIU W X, CHENG H, et al.. A versatile plasma membrane engineered cell vehicle for contact-cell-enhanced photodynamic therapy[J]. Advanced Functional Materials, 2017, 27(12):1604916-n/a. doi: 10.1002/adfm.v27.12
    [18]
    TIAN H, LUO Z, LIU L, et al.. Cancer cell membrane-biomimetic oxygen nanocarrier for breaking hypoxia-induced chemoresistance[J]. Advanced Functional Materials, 2017, 27(38):1703197-n/a. doi: 10.1002/adfm.v27.38
    [19]
    FU Q, LV P, CHEN Z, et al.. Programmed co-delivery of paclitaxel and doxorubicin boosted by camouflaging with erythrocyte membrane[J]. Nanoscale, 2015, 7(9):4020-4030. doi: 10.1039/C4NR07027E
    [20]
    DEHAINI D, WEI X, FANG R H, et al.. Erythrocyte-platelet hybrid membrane coating for enhanced nanoparticle functionalization[J]. Advanced Materials, 2017, 29(16):1606209-n/a. doi: 10.1002/adma.201606209
    [21]
    CHEN Z, ZHAO P, LUO Z, et al.. Cancer cell membrane-biomimetic nanoparticles for homologous-targeting dual-modal imaging and photothermal therapy[J]. ACS Nano, 2016, 10(11):10049-10057. doi: 10.1021/acsnano.6b04695
    [22]
    LUK B T, FANG R H, HU C-M J, et al.. Safe and immunocompatible nanocarriers cloaked in RBC membranes for drug delivery to treat solid tumors[J]. Theranostics, 2016, 6(7):1004-1011. doi: 10.7150/thno.14471
    [23]
    SU J, SUN H, MENG Q, et al.. Long circulation red-blood-cell-mimetic nanoparticles with peptide-enhanced tumor penetration for simultaneously inhibiting growth and lung metastasis of breast cancer[J]. Advanced Functional Materials, 2016, 26(8):1243-1252. doi: 10.1002/adfm.v26.8
    [24]
    LI S Y, CHENG H, XIE B R, et al.. Cancer cell membrane camouflaged cascade bioreactor for cancer targeted starvation and photodynamic therapy[J]. ACS Nano, 2017, 11(7):7006-7018. doi: 10.1021/acsnano.7b02533
    [25]
    WANG X, LI H, LIU X, et al.. Enhanced photothermal therapy of biomimetic polypyrrole nanoparticles through improving blood flow perfusion[J]. Biomaterials, 2017, 143(Supplement C):130-141. http://cn.bing.com/academic/profile?id=d8ed9365d0b05aef02359485bc53cfa7&encoded=0&v=paper_preview&mkt=zh-cn
    [26]
    REN X, ZHENG R, FANG X, et al.. Red blood cell membrane camouflaged magnetic nanoclusters for imaging-guided photothermal therapy[J]. Biomaterials, 2016, 92(Supplement C):13-24. http://cn.bing.com/academic/profile?id=3c8c41999685f2c66f7ba9e881ad8b2e&encoded=0&v=paper_preview&mkt=zh-cn
    [27]
    ZHANG Z, WANG J, NIE X, et al.. Near infrared laser-induced targeted cancer therapy using thermoresponsive polymer encapsulated gold nanorods[J]. Journal of the American Chemical Society, 2014, 136(20):7317-7326. doi: 10.1021/ja412735p
    [28]
    MELANCON M P, ZHOU M, LI C. Cancer theranostics with near-infrared light-activatable multimodal nanoparticles[J]. Accounts of Chemical Research, 2011, 44(10SI):947-956. http://cn.bing.com/academic/profile?id=83b56c30ef5304f92c08426f0a6e5fb1&encoded=0&v=paper_preview&mkt=zh-cn
    [29]
    CHENG L, GONG H, ZHU W, et al.. PEGylated prussian blue nanocubes as a theranostic agent for simultaneous cancer imaging and photothermal therapy[J]. Biomaterials, 2014, 35(37):9844-9852. doi: 10.1016/j.biomaterials.2014.09.004
    [30]
    HU C-M J, ZHANG L, ARYAL S, et al.. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform[J]. Proceedings of the National Academy of Sciences, 2011, 108(27):10980-10985. doi: 10.1073/pnas.1106634108
    [31]
    LANG R, JUN-HUA X, BO C, et al.. Synthetic nanoparticles camouflaged with biomimetic erythrocyte membranes for reduced reticuloendothelial system uptake[J]. Nanotechnology, 2016, 27(8):085106. doi: 10.1088/0957-4484/27/8/085106
    [32]
    RAO L, MENG Q F, HUANG Q, et al.. Photocatalytic degradation of cell membrane coatings for controlled drug release[J]. Advanced Healthcare Materials, 2016, 5(12):1420-1427. doi: 10.1002/adhm.201600303
    [33]
    RAO L, CAI B, BU L L, et al.. Microfluidic electroporation-facilitated synthesis of erythrocyte membrane-coated magnetic nanoparticles for enhanced imaging-guided cancer therapy[J]. ACS Nano, 2017, 11(4):3496-3505. doi: 10.1021/acsnano.7b00133
    [34]
    RAO L, BU L L, MENG Q F, et al.. Antitumor platelet-mimicking magnetic nanoparticles[J]. Advanced Functional Materials, 2017, 27(9):1604774-n/a. doi: 10.1002/adfm.201604774
    [35]
    HU Q, SUN W, QIAN C, et al.. Anticancer platelet-mimicking nanovehicles[J]. Advanced Materials, 2015, 27(44):7043-7050. doi: 10.1002/adma.201503323
    [36]
    RAO L, BU L L, CAI B, et al.. Cancer cell membrane-coated upconversion nanoprobes for highly specific tumor imaging[J]. Advanced Materials, 2016, 28(18):3460-3466. doi: 10.1002/adma.201506086
    [37]
    GAO W, FANG R H, THAMPHIWATANA S, et al. Modulating antibacterial immunity via bacterial membrane-coated nanoparticles[J]. Nano Letters, 2015, 15(2):1403-1409. doi: 10.1021/nl504798g
    [38]
    GAO C, LIN Z, JURADO-SÁNCHEZ B, et al.. Stem cell membrane-coated nanogels for highly efficient in vivo tumor targeted drug delivery[J]. Small, 2016, 12(30):4056-4062. doi: 10.1002/smll.v12.30
    [39]
    GAO C, LIN Z, WU Z, et al.. Stem-cell-membrane camouflaging on near-infrared photoactivated upconversion nanoarchitectures for in vivo remote-controlled photodynamic therapy[J]. ACS Applied Materials & Interfaces, 2016, 8(50):34252-34260. http://cn.bing.com/academic/profile?id=efe298a12b0b619b18a0e69a3a6370c5&encoded=0&v=paper_preview&mkt=zh-cn
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article views(2233) PDF downloads(261) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return