Volume 11 Issue 3
Jun.  2018
Turn off MathJax
Article Contents
SHI Yu-jie, ZHANG Guang-jie, LU Zheng-yuan, YING Ya-chen, JIA Hui-lin, XI Peng. Advances in multiphoton microscopy technologies[J]. Chinese Optics, 2018, 11(3): 296-306. doi: 10.3788/CO.20181103.0296
Citation: SHI Yu-jie, ZHANG Guang-jie, LU Zheng-yuan, YING Ya-chen, JIA Hui-lin, XI Peng. Advances in multiphoton microscopy technologies[J]. Chinese Optics, 2018, 11(3): 296-306. doi: 10.3788/CO.20181103.0296

Advances in multiphoton microscopy technologies

Funds:

National Instrument Development Special Program No.2013YQ03065102

National Natural Science Foundation of China No.61475010

National Natural Science Foundation of China No.61729501

Ministry of Science and Technology of China, Key Research and Development Projects No.2013YQ03065102

More Information
  • Corresponding author: ZHANG Guang-jie, E-mail:jiezgm@126.com
  • Received Date: 26 Feb 2018
  • Rev Recd Date: 28 Mar 2018
  • Publish Date: 01 Jun 2018
  • Compared with traditional optical imaging techniques, the fast-developing multiphoton microscopy technologies possess multiple advantages, such as deep penetration, low tissue photo-damaging, high signal-to-noise ratio, and excellent optical sectioning ability. Therefore, they have been widely applied in tissue-level microscopy in vivo for brains, tumors and embryos. This article reviews the recent development of new multiphoton microscopy technologies, including miniaturized two-photon microscopy, two-photon endoscopy, and three-photon microscopy. The review briefly illustrates their principles and characteristics, introduces the latest progresses in these areas, summarizes their main applications in basic research and clinical diagnosis, and discusses their potential application and development in the future. With the advances in laser devices and optical detectors, multiphoton microscopy will become an important tool for biomedical research with broad applications.

     

  • loading
  • [1]
    DENK W, STRICKLER J H, WEBB W W. Two-photon laser scanning fluorescence microscopy[J]. Science, 1990, 248(4951):73-76. doi: 10.1126/science.2321027
    [2]
    DOMBECK D A, HARVEY C D, TIAN L, et al.. Functional imaging of hippocampal place cells at cellular resolution during virtual navigation[J]. Nature Neuroscience, 2010, 13(11):1433-1440. doi: 10.1038/nn.2648
    [3]
    OLIVIER N, LUENGO-OROZ M A, DULOQUIN L, et al.. Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy[J]. Science, 2010, 329(5994):967-971. doi: 10.1126/science.1189428
    [4]
    MIZRAHI A, CROWLEY J C, SHTOYERMAN E, et al.. High-resolution in vivo imaging of hippocampal dendrites and spines[J]. Journal of Neuroscience, 2004, 24(13):3147-3151. doi: 10.1523/JNEUROSCI.5218-03.2004
    [5]
    SVOBODA K, YASUDA R. Principles of two-photon excitation microscopy and its applications to neuroscience[J]. Neuron, 2006, 50(6):823-839. doi: 10.1016/j.neuron.2006.05.019
    [6]
    NIELL C M, SMITH S J. Live optical imaging of nervous system development[J]. Annual Review of Physiology, 2004, 66(1):771-798. doi: 10.1146/annurev.physiol.66.082602.095217
    [7]
    KERR J N, DENKW. Imaging in vivo:watching the brain in action[J]. Nature Reviews Neuroscience, 2008, 9(3):195-205. doi: 10.1038/nrn2338
    [8]
    CHEN C C, LU J, ZUO Y. Spatiotemporal dynamics of dendritic spines in the living brain[J]. Frontires in Neuroanatomy, 2014, 8:28. http://cn.bing.com/academic/profile?id=bf3ed0a24a65f06fd1c6ae6d0b3214a0&encoded=0&v=paper_preview&mkt=zh-cn
    [9]
    PIYAWATTANAMETHA W, COCKER ED, BURNS L D, et al.. In vivo brain imaging using a portable 2.9 g two-photon microscope based on a microelectromechanical systems scanning mirror[J]. Optics Letters, 2009, 34(15):2309-2311. doi: 10.1364/OL.34.002309
    [10]
    HELMCHEN F, FEE M S, TANK D W, et al.. A miniature head-mounted two-photon microscope:high-resolution brain imaging in freely moving animals[J]. Neuron, 2001, 31:903-912. doi: 10.1016/S0896-6273(01)00421-4
    [11]
    MYAING M T, MACDONALD D J, LI X. Fiber-optic scanning two-photon fluorescence endoscope[J]. Optics Letters, 2006, 31(8):1076-1078. doi: 10.1364/OL.31.001076
    [12]
    PIYAWATTANAMETHA W, BARRETTO R P J, KO T H, et al.. Fast-scanning two-photon fluorescence imaging based on a microelectromechanical systems two-dimensional scanning mirror[J]. Optics Letters, 2006, 31(13):2018-2020. doi: 10.1364/OL.31.002018
    [13]
    ZONG W, WU R, LI M, et al.. Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice[J]. Nature Methods, 2017, 14(7):713-719. doi: 10.1038/nmeth.4305
    [14]
    ATTARDO A, FITZGERALD J E, SCHNITZER M J. Impermanence of dendritic spines in live adult CA1 hippocampus[J]. Nature, 2015, 523(7562):592-596. doi: 10.1038/nature14467
    [15]
    BOCARSLY M E, JIANG W C, WANG C, et al.. Minimally invasive microendoscopy system for in vivo functional imaging of deep nuclei in the mouse brain[J]. Biomedical Optics Express, 2015, 6(11):4546-4556. doi: 10.1364/BOE.6.004546
    [16]
    CODA S, SIERSEMA P D, STAMP G W, et al.. Biophotonic endoscopy:a review of clinical research techniques for optical imaging and sensing of early gastrointestinal cancer[J]. Endoscopy International Open, 2015, 3(5):E380-392. doi: 10.1055/s-00025476
    [17]
    GU M, BAO H, KANG H. Fibre-optical microendoscopy[J]. Journal of Microscopy, 2014, 254(1):13-18. doi: 10.1111/jmi.12119
    [18]
    BIRD D, GU M. Fibre-optic two-photon scanning fluorescence microscopy[J]. Journal of Microscopy, 2002, 208:35-48. doi: 10.1046/j.1365-2818.2002.01059.x
    [19]
    BAO H C, ALLEN J, PATTIE R, et al.. Fast handheld two-photon fluorescence microendoscope with a 475μm×475μm field of view for in vivo imaging[J]. Optics Letters, 2008, 33(12):1333-1335. doi: 10.1364/OL.33.001333
    [20]
    FU L, GU M. Fibre-optic nonlinear optical microscopy and endoscopy[J]. Journal of Microscopy, 2007, 226:195-206. doi: 10.1111/jmi.2007.226.issue-3
    [21]
    FLUSBERG B A, COCKER E D, PIYAWATTANAMETHA W, et al.. Fiber-optic fluorescence imaging[J]. Nature Methods, 2005, 2(12):941-950. doi: 10.1038/nmeth820
    [22]
    FLUSBERG B A, JUNG J C, COCKER E D, et al.. In vivo brain imaging using a portable 3.9 gram two-photon fluorescence microendoscope[J]. Optics Letters, 2005, 30(17):2272-2274. doi: 10.1364/OL.30.002272
    [23]
    MYAING M T, YE J Y, NORRIS T B, et al.. Enhanced two-photon biosensing with double-clad photonic crystal fibers[J]. Optics Letters, 2003, 28(14):1224-1226. doi: 10.1364/OL.28.001224
    [24]
    FU L, JAIN A, XIE H, et al.. Nonlinear optical endoscopy based on a double-clad photonic crystal fiber and a MEMS mirror[J]. Optics Express, 2006, 14(3):1027-1032. doi: 10.1364/OE.14.001027
    [25]
    LIANG W X, HALL G, MESSERSCHMIDT B, et al.. Nonlinear optical endomicroscopy for label-free functional histology in vivo[J]. Light:Science & Applications, 2017, 6(7):e17082. https://www.researchgate.net/publication/320836063_Nonlinear_optical_endomicroscopy_for_label-free_functional_histology_in_vivo
    [26]
    AKINS M L, LUBY-PHELPS K, MAHENDROO M. Second harmonic generation imaging as a potential tool for staging pregnancy and predicting preterm birth[J]. Journal of Biomedical Optics, 2010, 15(2):026020. doi: 10.1117/1.3381184
    [27]
    OHEIM M, BEAUREPAIRE E, CHAIGNEAU E, et al.. Two-photon microscopy in brain tissue:parameters influencing the imaging depth[J]. Journal of Neuroscience Methods, 2001, 111(1):29-37. doi: 10.1016/S0165-0270(01)00438-1
    [28]
    CATALANO I M, CINGOLANI A. Three-photon absorption coefficient determination by means of nonlinear luminescence experiments[J]. Journal of Applied Physics, 1979, 50(9):5638-5641. doi: 10.1063/1.326738
    [29]
    DAVEY A P, BOURDIN E, HENARI F, et al.. Three photon induced fluorescence from a conjugated organic polymer for infrared frequency upconversion[J]. Applied Physics Letters, 1995, 67(7):884-885. doi: 10.1063/1.114724
    [30]
    HELL S F, BAHLMANN K, SCHRADER M, et al.. Three-photon excitation in fluorescence microscopy[J]. Journal of Biomedical Optics, 1996, 1(1):71-74. doi: 10.1117/12.229062
    [31]
    GRYCZYNSKI I, SZMACINSKI H, LAKOWICZ J R. On the possibility of calcium imaging using indo-1 with three-photon excitation[J]. Photochemistry and Photobiology, 1995, 62(4):804-808. doi: 10.1111/php.1995.62.issue-4
    [32]
    GRYCZYNSKI I, MALAK H, LAKOWICZ J R, et al.. Fluorescence spectral properties of troponin c mutant f22w with one-, two-, and three-photon excitation[J]. Biophysics Journal, 1996, 71(6):3448-3453. doi: 10.1016/S0006-3495(96)79540-1
    [33]
    XU C, ZIPFEL W, SHEAR J B, et al.. Multiphoton fluorescence excitation:New spectral windows for biological nonlinear microscopy[J]. Proceedings of the National Academy of Sciences, 1996, 93:10763-10768. doi: 10.1073/pnas.93.20.10763
    [34]
    WOKOSIN D L, CENTONZE V E, CRITTENDEN S, et al.. Three-photon excitation fluorescence imaging of biological specimens using an all-solid-state laser[J]. Bioimaging, 1996, 4:208-214. doi: 10.1002/1361-6374(199609)4:3<208::AID-BIO11>3.3.CO;2-A
    [35]
    MATSUDA H, FUJIMOTO Y, ITO S, et al.. Development of near-infrared 35 fs laser microscope and its application to the detection of three-and four-photon fluorescence of organic microcrystals[J]. The Journal of Physical Chemistry, 2006, 110:1091-1094. doi: 10.1021/jp0561165
    [36]
    NORRIS G, AMOR R, DEMPSTER J, et al.. A promising new wavelength region for three-photon fluorescence microscopy of live cells[J]. Journal of Microscopy, 2012, 246(3):266-273. doi: 10.1111/j.1365-2818.2012.03610.x
    [37]
    HORTON N G, WANG K, KOBAT D, et al.. In vivo three-photon microscopy of subcortical structures within an intact mouse brain[J]. Nature Photonics, 2013, 7(3):205-209. doi: 10.1038/nphoton.2012.336
    [38]
    ORON D, TAL E, SILBERBERG Y. Scanningless depth-resolved microscopy[J]. Optics Express, 2005, 13(5):1468-1476. doi: 10.1364/OPEX.13.001468
    [39]
    ROWLANDS C J, PARK D, BRUNS O T, et al.. Wide-field three-photon excitation in biological samples[J]. Light:Science & Applications, 2016, 5:e16255. http://cn.bing.com/academic/profile?id=a8d6cfbf060c84ba943d8038832668ee&encoded=0&v=paper_preview&mkt=zh-cn
    [40]
    HELMCHEN F, DENK W. Deep tissue two-photon microscopy[J]. Nature Methods, 2005, 2(12):932-940. doi: 10.1038/nmeth818
    [41]
    CHOI H, YEW E Y, HALLACOGLU B, et al.. Improvement of axial resolution and contrast in temporally focused widefield two-photon microscopy with structured light illumination[J]. Biomed Opt Express, 2013, 4(7):995-1005. doi: 10.1364/BOE.4.000995
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article views(3455) PDF downloads(467) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return