Volume 11 Issue 1
Feb.  2018
Turn off MathJax
Article Contents
MA Guo-lu, LIU Li-xian, YANG Gui-yang, ZHAO Bin. Generating method of non-diffracting beam with long-distance propagation and controllable parameters[J]. Chinese Optics, 2018, 11(1): 100-107. doi: 10.3788/CO.20181101.0100
Citation: MA Guo-lu, LIU Li-xian, YANG Gui-yang, ZHAO Bin. Generating method of non-diffracting beam with long-distance propagation and controllable parameters[J]. Chinese Optics, 2018, 11(1): 100-107. doi: 10.3788/CO.20181101.0100

Generating method of non-diffracting beam with long-distance propagation and controllable parameters

doi: 10.3788/CO.20181101.0100

National Natural Science Foundation of China 61505169

Key Projects in Sichuan Province Department of Education 15ZA0116

Key Project of Fundamental Co-construction of Sichuan Province in China 13zxzk06

Natural Science Foundation of Southwest University of Science and Technology 14zx7160

More Information
  • Corresponding author: MA Guo-lu, E-mail:maguolu999@163.com
  • Received Date: 2017-08-11
  • Rev Recd Date: 2017-10-17
  • Publish Date: 2018-02-01
  • In order to eliminate the restriction of optical device geometrical parameters on the propagation characteristics of non-diffracting beams and to achieve the controllability of the characteristic parameters of non-diffracting beams propagating in long-distance space, the generation method of parameter controlled non-diffracting beam over long distance is studied in this paper. First of all, by studying the electric field distribution of the axicon refraction shadow area, it is found that although the paraxial area beyond the critical surface of the axicon non-diffractive area is in the paraxial area of the geometric refraction shadow, there is still a spherical wave whose intensity follows first kind of zero-order Bessel function distribution. On this basis, a non-diffracting light generation method is proposed which is not limited by the distance of the propagation space. Finally, the parameters of the non-diffracing light propagation characteristics are tested in the range of nearly 12 m, and it is found that the difference between the experimental and theoretical values is less than 0.1 μm. The non-diffracting beam is generated by collimating spherical diffracted light spots of the first kind of zero-order Bessel function distribution, which is essentially different from the traditional method of generating interference and non-diffracting light beams and is easy to generate large-scale space non-diffracting beams. In general, this method is particularly suitable for the use in non-energy conditions, such as large-scale linear reference space, beam space communications, and has enormous engineering application value.
  • loading
  • [1]
    DURNIN J. Exact solutions for nondiffracting beams.Ⅰ.the scalar theory[J]. J. Opt. Soc. Am. A, 1987, 4(4):651-654. doi: 10.1364/JOSAA.4.000651
    SERVANDO L A, CESAR R V, BENJAMIN P G, et al.. Quasi-one-dimensional optical lattices for soliton manipulation[J]. Opt. Lett., 2014, 39(22):6545-6548. doi: 10.1364/OL.39.006545
    SELCUK A, ARNOLD C L, BERNARD P, et al.. Generation of high quality tunable Bessel beams using a liquid-immersion axicon[J]. Opt. Commun., 2009, 282(16):3206-3209. doi: 10.1016/j.optcom.2009.05.026
    王硕琛, 梅小华, 吴逢铁, 等.无衍射光束簇[J].华侨大学学报, 2016, 2:149-154. doi: 10.11830/ISSN.1000-5013.2016.02.0149

    WANG SH C, MEI X H, WU F T, et al.. The bunch of non-diffracing beam[J]. Journal of Huaqiao University, 2016, 2:149-154.(in Chinese) doi: 10.11830/ISSN.1000-5013.2016.02.0149
    TURUNEN J, VASARA A, FRIBERG A T. Holographic generation of diffraction-free beams[J]. Appl Opt., 1988, 27:3959-3962. doi: 10.1364/AO.27.003959
    马国鹭, 曾国英, 赵斌.基于无衍射姿态探针和全站仪组合测量空间隐藏坐标[J].光学精密工程, 2015, 23(2):363-370. https://www.wenkuxiazai.com/doc/1dc38fed1eb91a37f0115c06.html

    MA G L, ZENG G Y, ZHAO B. Measurement of space coordinates in hidden parts by combining non-diffracting attitude probe and total station[J]. Opt. Precision Eng., 2015, 23(2):363-370.(in Chinese) https://www.wenkuxiazai.com/doc/1dc38fed1eb91a37f0115c06.html
    刘华.利用汉克尔变换设计高斯光束整形衍射元件的应用研究[J].中国光学, 2016, 9(2):277-283. http://www.chineseoptics.net.cn/CN/abstract/abstract9407.shtml

    LIU H. Gaussian beam shaping diffractive optical element designed by Hankel transformation[J]. Chinese Optics., 2016, 9(2):277-283.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9407.shtml
    张健, 栗孟娟, 阴刚华, 等.用于太空望远镜的大口径薄膜菲涅尔衍射元件[J].光学精密工程, 2016, 24(6):1289-1296. http://www.eope.net/gxjmgc/CN/abstract/abstract16420.shtml

    ZHANG J, LI M J, YIN G H, et al.. Large-diameter membrane Fresnel diffraction elements for space telescope[J]. Opt. Precision Eng., 2016, 24(6):1289-1296.(in Chinese) http://www.eope.net/gxjmgc/CN/abstract/abstract16420.shtml
    吕强, 李文昊, 巴音贺希格, 等.基于衍射光栅的干涉式精密位移测量系统[J].中国光学, 2017, 10(1):39-50. http://www.chineseoptics.net.cn/CN/abstract/abstract9490.shtml

    LV Q, LI W H, BAYANHESHIG, et al.. Interferometric precision displacement measurement system based on diffraction grating[J]. Chinese Optics., 2017, 10(1):39-50.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9490.shtml
    GREENGARD A, SCHECHNER Y Y, PIESTUN R, et al.. Depth from diffracted rotation[J]. Opt. Lett., 2006, 31(21):181-183. https://www.researchgate.net/publication/7332689_Depth_from_diffracted_rotation
    马国鹭, 刘丽贤, 赵斌.基于无衍射光的空间入射角测量及其自动标定[J].仪器仪表学报, 2016, 37(8):1906-1912. https://www.cnki.com.cn/lunwen-1016058201.html

    MA G L, LIU L X, ZHAO B. Measurement and automatic calibration of spatial incident angle based on non-diffracting L beam[J]. Chinese Journal of Science Instrument, 2016, 37(8):1906-1912.(in Chinese) https://www.cnki.com.cn/lunwen-1016058201.html
    DAVIS J A, CARCOLE E, COTTRELL D M, et al.. Intensity and phase measurements of nondiffracting beams generated with a magneto-optic spatial light modulator[J]. Appl. Opt., 1996, 35(4):593-598. doi: 10.1364/AO.35.000593
    OZTAS Z, YUCE C. Discrete parametric oscillation and nondiffracting beams in a Glauber-Fock oscillator[J]. Physics Letters A, 2016, 380(40):3307-3311. doi: 10.1016/j.physleta.2016.07.054
    ZIOLKOWSKI R W, LEWIS D K, COOK B D, et al.. Evidence of localized wave transmission[J]. Phys. Rev. Lett., 1989, 62(2):147-150. doi: 10.1103/PhysRevLett.62.147
    COX A J, DIBBLE D C. Nondiffracting beam from a spatially filtered Fabry-Perot resonator[J]. J. Opt. Soc. Am. A, 1992, 9(2):282-286. doi: 10.1364/JOSAA.9.000282
    LÓPEZ-MARISCAL C, GUTIERREZ-VEGA C. The generation of nondiffracting beams using inexpensive computer-generated holograms[J]. J. Phys Am., 2007, 75(1):36-42. doi: 10.1119/1.2359001
    DAVIS J A, CARCOLE E, COTTRELL D M. Nondiffracting interference patterns generated with programmable spatial light modulators[J]. Appl. Opt., 1996, 35(4):599-602. doi: 10.1364/AO.35.000599
    INDEBETOUW G. Nondiffracting optical fields:some remarks on their analysis and synthesis[J]. J. Opt. Soc. Am. A, 1989, 6(1):150-152. doi: 10.1364/JOSAA.6.000150
    JAROSZEWICZ Z, ROM N DOPAZO J F, GOMEZ-REINO C, et al.. Uniformizaion of the axial intensity of diffraction axicons by poly chromatic illumination[J]. Appl. Opt., 1996, 35(7):1025-1031. doi: 10.1364/AO.35.001025
    BRZOBOHATY' O, ČIŽMÁR T, ZEMÁNEK P, et al.. High quality quasi-bessel beam generated by round-tip axicon[J]. Opt. Express, 2008, 16(17):12688-12700. doi: 10.1364/OE.16.012688
    MA G L, ZENG G Y, ZHAO B, et al.. Arago-Poisson diffraction spot observed in the shadow area of an axicon lens[J]. J. Opt., 2015, 44(4):391-396. doi: 10.1007/s12596-015-0271-8
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article views (1345) PDF downloads(527) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint