Volume 11 Issue 1
Feb.  2018
Turn off MathJax
Article Contents
WANG Xue-fei, LU Zhen-wu, WANG Tai-sheng, YU Wei-xing. Grating diffractive behavior of surface plasmon wave on meta-surface[J]. Chinese Optics, 2018, 11(1): 60-73. doi: 10.3788/CO.20181101.0060
Citation: WANG Xue-fei, LU Zhen-wu, WANG Tai-sheng, YU Wei-xing. Grating diffractive behavior of surface plasmon wave on meta-surface[J]. Chinese Optics, 2018, 11(1): 60-73. doi: 10.3788/CO.20181101.0060

Grating diffractive behavior of surface plasmon wave on meta-surface

doi: 10.3788/CO.20181101.0060
Funds:

National Natural Science Foundation of China 61361166004

More Information
  • Author Bio:

    WANG Xuefei(1990—), master′s degree candidate, obtained her bachelor's degree from Northeast Forestry University in 2013. Her main research interest focuses on surface plasmon waves. E-mail:wangxuefeizb@163.com

    YU Weixing(1975—) received his bachelor′s degree from Northwestern Polytechnical University in 1998, a master′s degree from Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences in 2001.In 2004, he received his Ph.D. from Nanyang Technological University in Singapore.In recent years, he is mainly engaged in research on the fields of subwavelength optics, micro/nano optics, surface plasmonic optics, microfabrication technology and 3D micro/nano fabrication technology. E-mail:yuwx@opt.ac.cn

  • Corresponding author: YU Wei-xing, E-mail:yuwx@opt.ac.cn
  • Received Date: 2017-07-11
  • Rev Recd Date: 2017-08-13
  • Publish Date: 2018-02-01
  • In this paper, a rigorous numerical simulation method(FDTD) is employed to study the grating diffractive behavior of surface plasmon polariton(SPP) waves on meta-surface excited by the incident visible light through metallic grating coupler in 550-700 nm waveband. The simulation results indicate that the diffraction of SPP waves on meta-surface is quite different from that of free space light. Due to the near-field characteristics, the SPP wave shows obvious diffractive effect in near field when it interacts with a metallic grating. However, the different diffracted orders will merge into one after propagating some distances. Nevertheless, the diffractive behavior in near-field is similar to that in free space. In near field, only the 0th order light is transmitted when metallic gratings have a sub-wavelength period and higher diffraction orders appear when the period of metallic gratings is larger than the wavelength of SPP waves. The research results of this paper are of great significance for designing spectroscopic devices or systems on meta-surface with a micronscale.
  • loading
  • [1]
    梁秋群. 金属纳米结构表面等离激元杂化和吸收特性的研究[D]. 北京: 中国科学院大学, 2015. http://www.irgrid.ac.cn/handle/1471x/1004792

    LIANG Q Q. Study on plasmon hybridization and optical absorption properties of metallic mano-structures[D]. Beijing: University of the Chinese Academy of Sciences, 2015. (in Chinese) http://www.irgrid.ac.cn/handle/1471x/1004792
    [2]
    曹水艳. 表面等离子体结构聚焦和吸收特性的研究[D]. 北京: 中国科学院大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-80139-1014218233.htm

    CAO SH Y. Study on the property of focusing and absorption of plasmonic nanostructures[D]. Beijing: University of the Chinese Academy of Sciences, 2013. (in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-80139-1014218233.htm
    [3]
    LIU N, MESCH M, WEISS T, et al.. Infrared perfect absorber and its application as plasmonic sensor[J]. Nano Lett., 2010, 10(7):2342-2348. doi: 10.1021/nl9041033
    [4]
    DREGELY D, TAUBERT R, GIESSEN H, et al.. 3D optical Yagi-Uda nanoantenna array[J]. Nat. Commun., 2011, 2:267. doi: 10.1038/ncomms1268
    [5]
    CAI W, SHALAE V V. Optical metamaterials:fundamentals and applications[J]. Contemporary Physics, 2012, 53(3):278-279. doi: 10.1080/00107514.2012.661780
    [6]
    YANG J Z, WANG T S, CHEN Z L, et al.. Super-resolution imaging at mid-infrared waveband in graphene-nanocavity formed on meta-surface[J]. Scientific Reports, 2016, 6:37898. doi: 10.1038/srep37898
    [7]
    肖钰斐, 张卫平, 黄海华, 等.金属光栅结构对表面等离子体共振的影响[J].中国激光, 2013, 40(11):245-250. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jjzz201311044&dbname=CJFD&dbcode=CJFQ

    XIAO Y F, ZHANG W P, HUANG H H, et al.. Influence of function of metal grating shape on surface plasmon resonance[J]. Chinese J. Laser, 2013, 40(11):245-250.(in Chinese) http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jjzz201311044&dbname=CJFD&dbcode=CJFQ
    [8]
    刘媛媛, 熊广, 王杨, 等.多谐振斦形缝隙纳米天线设计及吸收特性[J].光学 精密工程, 2017, 25(8):2155-2164. http://www.eope.net/gxjmgc/CN/abstract/abstract17156.shtml

    LIU Y Y, XIONG G, WANG Y, et al.. Design of multi resonant U shaped slots nano-antenna and their absorption properties[J]. Opt. Precision Eng., 2017, 25(8):2155-2164.(in Chinese) http://www.eope.net/gxjmgc/CN/abstract/abstract17156.shtml
    [9]
    陈烽, 叶雄英, 伍康, 等.双波长集成光栅干涉微位移测量方法[J].光学 精密工程, 2012, 20(11):2433-2438. http://www.cqvip.com/QK/92835A/201211/43959045.html

    CHEN F, YE X Y, WU K, et al.. Displacement measurement method based on integrated grating interferometry with two-wavelength lasers[J]. Opt. Precision Eng., 2012, 20(11):2433-2438.(in Chinese) http://www.cqvip.com/QK/92835A/201211/43959045.html
    [10]
    ZHANG X, LIU Z. Superlenses to overcome the diffraction limit[J]. Nat. Mater., 2008, 7:435-441. doi: 10.1038/nmat2141
    [11]
    胡昌奎. 基于纳米金属光栅结构的表面等离子体共振传感研究[D]. 武汉: 华中科技大学, 2010. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D152529

    HU CH K. Study on surface plasmon resonance sensor basde on nano metallic surface-relief grating[D]. Wuhan: Huazhong University of Science & Technology, 2010. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D152529
    [12]
    张善文, 巴音贺希格.宽波段金属光栅设计中闪耀波长对光栅异常的补偿效应[J].光学 精密工程, 2009, 17(5):990-1000. https://www.cnki.com.cn/qikan-GXJM200905012.html

    ZHANG SH W, BAYINHESHIG. Compensating effect of blazed wavelength to grating anomalies in design of broadband metallic diffraction gratings[J]. Opt. Precision Eng., 2009, 17(5):990-1000.(in Chinese) https://www.cnki.com.cn/qikan-GXJM200905012.html
    [13]
    RAETHER H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings[M]. Springer-Verlag Berlin Heidelberg, 1988.
    [14]
    石顺祥, 刘继芳, 孙艳玲.光的电磁理论:光波的传播与控制[M].西安:西安电子科技大学出版社, 2006.

    SHI SH X, LIU J F, SUN Y L. Electromagnetic Theory of Light:Propagation and Control of Light[M]. Xi'an:University of Xi'an Electronic Science and Technology Press, 2006.(in Chinese)
    [15]
    GAZZPLA E, BRIGO L, ZACCO G, et al.. Coupled SPP modes on 1D plasmonic gratings in conical mounting[J]. Plasmonics, 2014, 9(4):867-876. doi: 10.1007/s11468-013-9624-9
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article views (2301) PDF downloads(833) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return