Volume 11 Issue 1
Feb.  2018
Turn off MathJax
Article Contents
REN Sheng, LIU Li-wei, LI Jin-hua, HU Si-yi, REN Yu, WANG Yue, XIU Jing-rui. Advances in the local field enhancement at nanoscale[J]. Chinese Optics, 2018, 11(1): 31-46. doi: 10.3788/CO.20181101.0031
Citation: REN Sheng, LIU Li-wei, LI Jin-hua, HU Si-yi, REN Yu, WANG Yue, XIU Jing-rui. Advances in the local field enhancement at nanoscale[J]. Chinese Optics, 2018, 11(1): 31-46. doi: 10.3788/CO.20181101.0031

Advances in the local field enhancement at nanoscale

doi: 10.3788/CO.20181101.0031
Funds:

Natural Science Foundation of SZU 2017027

Changchun University of Science and Technology Innovation Fund XJJLG-2015-01

Changchun University of Science and Technology Youth Fund XQNJJ-2016-10

More Information
  • Corresponding author: LIU Li-wei, E-mail:llw_cust@163.com
  • Received Date: 2017-09-14
  • Rev Recd Date: 2017-11-04
  • Publish Date: 2018-02-01
  • Local field enhancement(LFE) based on the plasmon resonance characteristics of metal nanoparticles has great potential in many fields such as microscopy, spectroscopy, semiconductor devices and nonlinear optics. Especially in the field of optical nanomaterials, local field enhancement effect can be produced by the combination of sub-wavelength metal nanoparticles and dielectrics to improve the optical properties of nanomaterials and promote the application of nanomaterials in the field of optics. In this paper, the local field enhancement effect of several common nanostructures and their applications is mainly reviewed. The relationship between different structural parameters of metal nanomaterials and the local field enhancement and the application of local field enhancement in nonlinear optics, spectroscopy, semiconductor devices are introduced and summarized. It is foreseeable that in the future, as the research on metal nanomaterials progresses, the application of localized field enhancement will be more extensive, which have a significant impact on the development of many fields.
  • loading
  • [1]
    ZIELINSKI M, WINTER S, KOLKOWSKI R, et al.. Nanoengineering the second order susceptibility in semiconductor quantum dot heterostructures[J]. Opt. Express, 2011, 19(7):6657-6670. doi: 10.1364/OE.19.006657
    [2]
    WANG SH W, QIAN J, HE S L, et al.. Three-photon luminescence of gold nanorods and its applications for high contrast tissue and deep in vivo brain imaging[J]. Ivyspring. Theranostics, 2015, 5(3):251-266. doi: 10.7150/thno.10396
    [3]
    ZHUANG Z Y, YANG Q, ZHANG Z M, et al.. A highly selective fluorescent probe for hydrogen peroxide and its applications in living cells[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2017, 344:8-14. doi: 10.1016/j.jphotochem.2017.04.009
    [4]
    MANDAL K, JANA D, GHORAI B, et al.. Fluorescent imaging probe from nanoparticle made of aie molecule[J]. Phys. Chem. C, 2016, 120(9):5196-5206. doi: 10.1021/acs.jpcc.5b12682
    [5]
    XU Q, HEO CH, JIN A K, et al.. A selective imidazoline-2-thione-bearing two-photon fluorescent probe for hypochlorous acid in mitochondria[J]. Anal. Chem., 2016, 88(12):6615-6620. doi: 10.1021/acs.analchem.6b01738
    [6]
    KAURANEN M, ZAYATS A V. Nonlinear plasmonics[J]. Nature Photonics, 2012, 6(11):737-748. doi: 10.1038/nphoton.2012.244
    [7]
    JASSIM N M, WANG K, HAN X, et al.. Plasmon assisted enhanced second-harmonic generation in single hybrid Au/ZnS nanowires[J]. Optical Materials, 2017, 64:257-261. doi: 10.1016/j.optmat.2016.11.034
    [8]
    王马华, 朱光平, 居勇峰, 等.纳米氧化锌中三光子吸收与倍频效应致光辐射特性[J].发光学报, 2015, 36(6):617-622. http://www.opticsjournal.net/Abstract.htm?id=OJ150625000093iOlRnU

    WANG M H, ZHU G P, JU Y F, et al.. Emission characteristics of crown-like ZnO nanocrystals induced by three-photon absorption and second harmonic generation effect[J]. Chinese J. Luminescence, 2015, 36(6):617-622.(in Chinese) http://www.opticsjournal.net/Abstract.htm?id=OJ150625000093iOlRnU
    [9]
    朱华, 颜振东, 詹鹏, 等.局域表面等离激元诱导的三次谐波增强效应[J].物理学报, 2013, 62(17): 178104. doi: 10.7498/aps.62.178104

    ZHU H, YAN ZH D, ZHAN P, et al.. Third harmonic generation enhancement effect induced by local surface plasmon[J]. Acta Phys. Sin., 2013, 62(17):178104.(in Chinese) doi: 10.7498/aps.62.178104
    [10]
    W YE, W ZHANG, S WANG, et al.. Effect of sapphire substrate on the localized surface plasmon resonance of aluminum triangular nanoparticles[J]. Optics Communications, 2017, 395:175-182. doi: 10.1016/j.optcom.2016.01.089
    [11]
    KUMAR A, DIXIT T, PALANI I A, et al.. Utilization of surface plasmon resonance of Au/Pt nanoparticles for highly photosensitive ZnO nanorods network based plasmon field effect transistor[J]. Physica E:Low-dimensional Systems and Nanostructures, 2017, 93:97-104. doi: 10.1016/j.physe.2017.06.005
    [12]
    AGHLARA H, ROSTAMI R, MAGHOUL A, et al.. Noble metal nanoparticle surface plasmon resonance in absorbing medium[J]. Optik-International Journal for Light and Electron Optics, 2015, 126(4):417-420. doi: 10.1016/j.ijleo.2013.12.089
    [13]
    SAFONOV A L, SULYAEVA V S, TIMOSHENKO N I, et al.. Deposition of thin composite films consisting of fluoropolymer and silver nanoparticles having surface plasmon resonance[J]. Thin Solid Films, 2016, 603:313-316. doi: 10.1016/j.tsf.2016.02.030
    [14]
    YAN L, YAN Y, XU L, et al. Large range localized surface plasmon resonance of Ag nanoparticles films dependent of surface morphology[J]. Applied Surface Science, 2016, 367:563-568. doi: 10.1016/j.apsusc.2016.01.238
    [15]
    薛彬, 孔祥贵, 王丹, 等.785 nm激光诱导银纳米三角片聚集表面增强拉曼散射效应[J].中国光学, 2014, 7(1):118-123. http://www.chineseoptics.net.cn/CN/abstract/abstract9104.shtml

    XUE B, KONG X G, WANG D, et al.. SERS effect of aggregation of silver nanoprisms induced by 785 nm laser[J]. Chinese Optics, 2014, 7(1):118-123.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9104.shtml
    [16]
    封昭, 周骏, 陈栋, 等.基于金/银纳米三明治结构SERS特性的超灵敏前列腺特异性抗原检测[J].发光学报, 2015, 36(9):1064-1070. http://www.opticsjournal.net/Abstract.htm?id=OJ151022000066C0FbIe

    FENG ZH, ZHOU J, CHEN D, et al.. Hypersensitization immunoassay of prostate-specific antigen based on SERS of sandwich-type Au/Ag nanostructure[J]. Chinese J. Luminescence, 2015, 36(9):1064-1070.(in Chinese) http://www.opticsjournal.net/Abstract.htm?id=OJ151022000066C0FbIe
    [17]
    李晓坤, 张友林, 孔祥贵.Ag纳米粒子聚集体的SiO2包覆及其SERS效应[J].发光学报, 2014, 35(7):853-857. http://www.opticsjournal.net/abstract.htm?id=OJ140218000123B9EbHd

    LI X K, ZHANG Y L, KONG X G. Aggregation of Ag nanoparticles coated with silica and its SERS effect[J]. Chinese J. Luminescence, 2014, 35(7):853-857.(in Chinese) http://www.opticsjournal.net/abstract.htm?id=OJ140218000123B9EbHd
    [18]
    SÖNNICHSEN C, ALIVISATOS A. Gold nanorods as novel nonbleaching plasmon-based orientation sensors for polarized single-particle microscopy[J]. Nano Lett., 2005, 5(2):301-304. doi: 10.1021/nl048089k
    [19]
    MURPHY C J, SAU T K, GOLE A M, et al.. Anisotropic metal nanoparticles:synthesis, assembly, and optical applications[J]. Phys. Chem. B, 2005, 109(29):13857-13870. doi: 10.1021/jp0516846
    [20]
    JIA K, YUAN L, ZHOU X, et al.. One-pot synthesis of Au/Ag bimetallic nanoparticles to modulate the emission of CdSe/CdS quantum dots[J]. RSC Adv., 2015, 5:58163-58170. doi: 10.1039/C5RA08933F
    [21]
    ZHU J, CHANG H, LI J J, et al.. Using silicon-coated gold nanoparticles to enhance the fluorescence of CdTe quantum dot and improve the sensing ability of mercury(Ⅱ)[J]. Molecular and Biomolecular Spectroscopy, 2017. http://www.ncbi.nlm.nih.gov/pubmed/28709143
    [22]
    ZHANG R, ZHOU Y, PENG L, et al.. Influence of SiO2 shell thickness on power conversion efficiency in plasmonic polymer solar cells with Au nanorod@SiO2core-shell structures[J]. Scientific Reports, 2016, 6:25036. doi: 10.1038/srep25036
    [23]
    ZHU J, REN Y, ZHAO S, et al.. The effect of inserted gold nanosphere on the local field enhancement of gold nanoshell[J]. Materials Chemistry and Physics, 2012, 133(2-3):1060-1065. doi: 10.1016/j.matchemphys.2012.02.016
    [24]
    JIANG N, DMITRY KUROUSKI, POZZI E A, et al.. Tip-enhanced Raman spectroscopy:from concepts to practical applications[J]. Chemical Physics Letters, 2016, 659:16-24. doi: 10.1016/j.cplett.2016.06.035
    [25]
    GAURAV SHARMA, VOLKER DECKERT, et al.. Tip-enhanced Raman scattering-Targeting structure-specific surface characterization for biomedical samples[J]. Advanced Drug Delivery Reviews, 2015, 89:42-56. doi: 10.1016/j.addr.2015.06.007
    [26]
    JUNG Y, CHEN H, TONG L, et al.. Imaging gold nanorods by plasmon-resonance-enhanced four wave mixing[J]. Journal of Physical Chemistry C, 2009, 113(7):2657-2663. doi: 10.1021/jp810852c
    [27]
    MVLLER M, KRAVTSOV V, PAARMANN A, et al.. A nanofocused plasmon-driven sub-10 femtosecond electron point source[J]. ACS Photonics, 2016, 3(4):611-619. doi: 10.1021/acsphotonics.5b00710
    [28]
    KRAVTSOV V, ULBRICHT R, ATKIN J M, et al.. Plasmonic nanofocused four-wave mixing for femtosecond near-field imaging[J]. Nature Nanotechnology, 2016, 11(5):459-464. doi: 10.1038/nnano.2015.336
    [29]
    SHALIN A S, SUKHOV S V, KRASNUK A E, et al.. Plasmonic nanostructures for local field enhancement in the UV region[J]. Photonics and Nanostructures-Fundamentals and Applications, 2014, 12(1):2-8. https://www.sciencedirect.com/science/article/pii/S1569441013000709
    [30]
    ZHENG G, M HLENBERND H, KENEY M, et al.. Metasurface holograms reaching 80% efficiency[J]. Nature Nanotechnology, 2015, 10(4):308-312. doi: 10.1038/nnano.2015.2
    [31]
    JIN B, ARGYROPOULOS C. Enhanced four-wave mixing with nonlinear plasmonic metasurfaces[J]. Scientific Reports, 2016, 6:28746. doi: 10.1038/srep28746
    [32]
    SCHMIDT R, SLOBOZHANYUK A, BELOV P, et al.. Flexible and compact hybrid metasurfaces for enhanced ultra high field in vivo magnetic resonance imaging[J]. Scientific Reports, 2017, 7:1678. doi: 10.1038/s41598-017-01932-9
    [33]
    JE SIPE, RW BOYD, Nanocomposite materials for nonlinear optics based on local field effects[J]. Springer Berlin Heidelberg, 2002, 82(4):1-19. http://www.springerlink.com/content/jrm27m1h4magmky0
    [34]
    RW BOYD, JE SIPE, et al.. Nonlinear optical properties of nanocomposite materials[J]. Pure & Applied Optics Journal of the European Optical Society Part A, 1996, 5(5):505. https://www.researchgate.net/profile/Robert_Boyd4/publication/231132905_Nonlinear_optical_properties_of_nanocomposite_materials/links/542d5df00cf29bbc126d2b16.pdf?inViewer=true&disableCoverPage=true&origin=publication_detail
    [35]
    GHIMIRE S, DICHIARA A D, SISTRUNK E, et al.. Observation of high-order harmonic generation in a bulk crystal[J]. Nature Physics, 2011, 7(2):138-141. doi: 10.1038/nphys1847
    [36]
    HAN S, KIM H, YONG W K, et al.. High-harmonic generation by field enhanced femtosecond pulses in metal-sapphire nanostructure[J]. Nature Communications, 2016, 7:13105. doi: 10.1038/ncomms13105
    [37]
    VAMPA G, GHAMSARI B G, HAMMOND T J, et al.. Plasmon-enhanced high-harmonic generation from silicon[J]. Nature Physics, 2017, 13:659-662. doi: 10.1038/nphys4087
    [38]
    帕拉斯·N·普拉萨德.纳米光子学[M].西安:西安交通大学出版社, 2010.

    PARAS N. PRASAD. Nanophotonics[M]. Xi'an:Xi'an Jiaotong University Press, 2010.
    [39]
    ZHU W, ESTEBAN R, BORISOV A G, et al.. Quantum mechanical effects in plasmonic structures with subnanometre gaps[J]. Nature Communications, 2016, 7:11495. doi: 10.1038/ncomms11495
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(20)  / Tables(1)

    Article views (1914) PDF downloads(533) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return