Volume 11 Issue 1
Feb.  2018
Turn off MathJax
Article Contents
REN Sheng, LIU Li-wei, LI Jin-hua, HU Si-yi, REN Yu, WANG Yue, XIU Jing-rui. Advances in the local field enhancement at nanoscale[J]. Chinese Optics, 2018, 11(1): 31-46. doi: 10.3788/CO.20181101.0031
Citation: REN Sheng, LIU Li-wei, LI Jin-hua, HU Si-yi, REN Yu, WANG Yue, XIU Jing-rui. Advances in the local field enhancement at nanoscale[J]. Chinese Optics, 2018, 11(1): 31-46. doi: 10.3788/CO.20181101.0031

Advances in the local field enhancement at nanoscale

doi: 10.3788/CO.20181101.0031

Natural Science Foundation of SZU 2017027

Changchun University of Science and Technology Innovation Fund XJJLG-2015-01

Changchun University of Science and Technology Youth Fund XQNJJ-2016-10

More Information
  • Corresponding author: LIU Li-wei, E-mail:llw_cust@163.com
  • Received Date: 2017-09-14
  • Rev Recd Date: 2017-11-04
  • Publish Date: 2018-02-01
  • Local field enhancement(LFE) based on the plasmon resonance characteristics of metal nanoparticles has great potential in many fields such as microscopy, spectroscopy, semiconductor devices and nonlinear optics. Especially in the field of optical nanomaterials, local field enhancement effect can be produced by the combination of sub-wavelength metal nanoparticles and dielectrics to improve the optical properties of nanomaterials and promote the application of nanomaterials in the field of optics. In this paper, the local field enhancement effect of several common nanostructures and their applications is mainly reviewed. The relationship between different structural parameters of metal nanomaterials and the local field enhancement and the application of local field enhancement in nonlinear optics, spectroscopy, semiconductor devices are introduced and summarized. It is foreseeable that in the future, as the research on metal nanomaterials progresses, the application of localized field enhancement will be more extensive, which have a significant impact on the development of many fields.
  • loading
  • [1]
    ZIELINSKI M, WINTER S, KOLKOWSKI R, et al.. Nanoengineering the second order susceptibility in semiconductor quantum dot heterostructures[J]. Opt. Express, 2011, 19(7):6657-6670. doi: 10.1364/OE.19.006657
    WANG SH W, QIAN J, HE S L, et al.. Three-photon luminescence of gold nanorods and its applications for high contrast tissue and deep in vivo brain imaging[J]. Ivyspring. Theranostics, 2015, 5(3):251-266. doi: 10.7150/thno.10396
    ZHUANG Z Y, YANG Q, ZHANG Z M, et al.. A highly selective fluorescent probe for hydrogen peroxide and its applications in living cells[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2017, 344:8-14. doi: 10.1016/j.jphotochem.2017.04.009
    MANDAL K, JANA D, GHORAI B, et al.. Fluorescent imaging probe from nanoparticle made of aie molecule[J]. Phys. Chem. C, 2016, 120(9):5196-5206. doi: 10.1021/acs.jpcc.5b12682
    XU Q, HEO CH, JIN A K, et al.. A selective imidazoline-2-thione-bearing two-photon fluorescent probe for hypochlorous acid in mitochondria[J]. Anal. Chem., 2016, 88(12):6615-6620. doi: 10.1021/acs.analchem.6b01738
    KAURANEN M, ZAYATS A V. Nonlinear plasmonics[J]. Nature Photonics, 2012, 6(11):737-748. doi: 10.1038/nphoton.2012.244
    JASSIM N M, WANG K, HAN X, et al.. Plasmon assisted enhanced second-harmonic generation in single hybrid Au/ZnS nanowires[J]. Optical Materials, 2017, 64:257-261. doi: 10.1016/j.optmat.2016.11.034
    王马华, 朱光平, 居勇峰, 等.纳米氧化锌中三光子吸收与倍频效应致光辐射特性[J].发光学报, 2015, 36(6):617-622. http://www.opticsjournal.net/Abstract.htm?id=OJ150625000093iOlRnU

    WANG M H, ZHU G P, JU Y F, et al.. Emission characteristics of crown-like ZnO nanocrystals induced by three-photon absorption and second harmonic generation effect[J]. Chinese J. Luminescence, 2015, 36(6):617-622.(in Chinese) http://www.opticsjournal.net/Abstract.htm?id=OJ150625000093iOlRnU
    朱华, 颜振东, 詹鹏, 等.局域表面等离激元诱导的三次谐波增强效应[J].物理学报, 2013, 62(17): 178104. doi: 10.7498/aps.62.178104

    ZHU H, YAN ZH D, ZHAN P, et al.. Third harmonic generation enhancement effect induced by local surface plasmon[J]. Acta Phys. Sin., 2013, 62(17):178104.(in Chinese) doi: 10.7498/aps.62.178104
    W YE, W ZHANG, S WANG, et al.. Effect of sapphire substrate on the localized surface plasmon resonance of aluminum triangular nanoparticles[J]. Optics Communications, 2017, 395:175-182. doi: 10.1016/j.optcom.2016.01.089
    KUMAR A, DIXIT T, PALANI I A, et al.. Utilization of surface plasmon resonance of Au/Pt nanoparticles for highly photosensitive ZnO nanorods network based plasmon field effect transistor[J]. Physica E:Low-dimensional Systems and Nanostructures, 2017, 93:97-104. doi: 10.1016/j.physe.2017.06.005
    AGHLARA H, ROSTAMI R, MAGHOUL A, et al.. Noble metal nanoparticle surface plasmon resonance in absorbing medium[J]. Optik-International Journal for Light and Electron Optics, 2015, 126(4):417-420. doi: 10.1016/j.ijleo.2013.12.089
    SAFONOV A L, SULYAEVA V S, TIMOSHENKO N I, et al.. Deposition of thin composite films consisting of fluoropolymer and silver nanoparticles having surface plasmon resonance[J]. Thin Solid Films, 2016, 603:313-316. doi: 10.1016/j.tsf.2016.02.030
    YAN L, YAN Y, XU L, et al. Large range localized surface plasmon resonance of Ag nanoparticles films dependent of surface morphology[J]. Applied Surface Science, 2016, 367:563-568. doi: 10.1016/j.apsusc.2016.01.238
    薛彬, 孔祥贵, 王丹, 等.785 nm激光诱导银纳米三角片聚集表面增强拉曼散射效应[J].中国光学, 2014, 7(1):118-123. http://www.chineseoptics.net.cn/CN/abstract/abstract9104.shtml

    XUE B, KONG X G, WANG D, et al.. SERS effect of aggregation of silver nanoprisms induced by 785 nm laser[J]. Chinese Optics, 2014, 7(1):118-123.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9104.shtml
    封昭, 周骏, 陈栋, 等.基于金/银纳米三明治结构SERS特性的超灵敏前列腺特异性抗原检测[J].发光学报, 2015, 36(9):1064-1070. http://www.opticsjournal.net/Abstract.htm?id=OJ151022000066C0FbIe

    FENG ZH, ZHOU J, CHEN D, et al.. Hypersensitization immunoassay of prostate-specific antigen based on SERS of sandwich-type Au/Ag nanostructure[J]. Chinese J. Luminescence, 2015, 36(9):1064-1070.(in Chinese) http://www.opticsjournal.net/Abstract.htm?id=OJ151022000066C0FbIe
    李晓坤, 张友林, 孔祥贵.Ag纳米粒子聚集体的SiO2包覆及其SERS效应[J].发光学报, 2014, 35(7):853-857. http://www.opticsjournal.net/abstract.htm?id=OJ140218000123B9EbHd

    LI X K, ZHANG Y L, KONG X G. Aggregation of Ag nanoparticles coated with silica and its SERS effect[J]. Chinese J. Luminescence, 2014, 35(7):853-857.(in Chinese) http://www.opticsjournal.net/abstract.htm?id=OJ140218000123B9EbHd
    SÖNNICHSEN C, ALIVISATOS A. Gold nanorods as novel nonbleaching plasmon-based orientation sensors for polarized single-particle microscopy[J]. Nano Lett., 2005, 5(2):301-304. doi: 10.1021/nl048089k
    MURPHY C J, SAU T K, GOLE A M, et al.. Anisotropic metal nanoparticles:synthesis, assembly, and optical applications[J]. Phys. Chem. B, 2005, 109(29):13857-13870. doi: 10.1021/jp0516846
    JIA K, YUAN L, ZHOU X, et al.. One-pot synthesis of Au/Ag bimetallic nanoparticles to modulate the emission of CdSe/CdS quantum dots[J]. RSC Adv., 2015, 5:58163-58170. doi: 10.1039/C5RA08933F
    ZHU J, CHANG H, LI J J, et al.. Using silicon-coated gold nanoparticles to enhance the fluorescence of CdTe quantum dot and improve the sensing ability of mercury(Ⅱ)[J]. Molecular and Biomolecular Spectroscopy, 2017. http://www.ncbi.nlm.nih.gov/pubmed/28709143
    ZHANG R, ZHOU Y, PENG L, et al.. Influence of SiO2 shell thickness on power conversion efficiency in plasmonic polymer solar cells with Au nanorod@SiO2core-shell structures[J]. Scientific Reports, 2016, 6:25036. doi: 10.1038/srep25036
    ZHU J, REN Y, ZHAO S, et al.. The effect of inserted gold nanosphere on the local field enhancement of gold nanoshell[J]. Materials Chemistry and Physics, 2012, 133(2-3):1060-1065. doi: 10.1016/j.matchemphys.2012.02.016
    JIANG N, DMITRY KUROUSKI, POZZI E A, et al.. Tip-enhanced Raman spectroscopy:from concepts to practical applications[J]. Chemical Physics Letters, 2016, 659:16-24. doi: 10.1016/j.cplett.2016.06.035
    GAURAV SHARMA, VOLKER DECKERT, et al.. Tip-enhanced Raman scattering-Targeting structure-specific surface characterization for biomedical samples[J]. Advanced Drug Delivery Reviews, 2015, 89:42-56. doi: 10.1016/j.addr.2015.06.007
    JUNG Y, CHEN H, TONG L, et al.. Imaging gold nanorods by plasmon-resonance-enhanced four wave mixing[J]. Journal of Physical Chemistry C, 2009, 113(7):2657-2663. doi: 10.1021/jp810852c
    MVLLER M, KRAVTSOV V, PAARMANN A, et al.. A nanofocused plasmon-driven sub-10 femtosecond electron point source[J]. ACS Photonics, 2016, 3(4):611-619. doi: 10.1021/acsphotonics.5b00710
    KRAVTSOV V, ULBRICHT R, ATKIN J M, et al.. Plasmonic nanofocused four-wave mixing for femtosecond near-field imaging[J]. Nature Nanotechnology, 2016, 11(5):459-464. doi: 10.1038/nnano.2015.336
    SHALIN A S, SUKHOV S V, KRASNUK A E, et al.. Plasmonic nanostructures for local field enhancement in the UV region[J]. Photonics and Nanostructures-Fundamentals and Applications, 2014, 12(1):2-8. https://www.sciencedirect.com/science/article/pii/S1569441013000709
    ZHENG G, M HLENBERND H, KENEY M, et al.. Metasurface holograms reaching 80% efficiency[J]. Nature Nanotechnology, 2015, 10(4):308-312. doi: 10.1038/nnano.2015.2
    JIN B, ARGYROPOULOS C. Enhanced four-wave mixing with nonlinear plasmonic metasurfaces[J]. Scientific Reports, 2016, 6:28746. doi: 10.1038/srep28746
    SCHMIDT R, SLOBOZHANYUK A, BELOV P, et al.. Flexible and compact hybrid metasurfaces for enhanced ultra high field in vivo magnetic resonance imaging[J]. Scientific Reports, 2017, 7:1678. doi: 10.1038/s41598-017-01932-9
    JE SIPE, RW BOYD, Nanocomposite materials for nonlinear optics based on local field effects[J]. Springer Berlin Heidelberg, 2002, 82(4):1-19. http://www.springerlink.com/content/jrm27m1h4magmky0
    RW BOYD, JE SIPE, et al.. Nonlinear optical properties of nanocomposite materials[J]. Pure & Applied Optics Journal of the European Optical Society Part A, 1996, 5(5):505. https://www.researchgate.net/profile/Robert_Boyd4/publication/231132905_Nonlinear_optical_properties_of_nanocomposite_materials/links/542d5df00cf29bbc126d2b16.pdf?inViewer=true&disableCoverPage=true&origin=publication_detail
    GHIMIRE S, DICHIARA A D, SISTRUNK E, et al.. Observation of high-order harmonic generation in a bulk crystal[J]. Nature Physics, 2011, 7(2):138-141. doi: 10.1038/nphys1847
    HAN S, KIM H, YONG W K, et al.. High-harmonic generation by field enhanced femtosecond pulses in metal-sapphire nanostructure[J]. Nature Communications, 2016, 7:13105. doi: 10.1038/ncomms13105
    VAMPA G, GHAMSARI B G, HAMMOND T J, et al.. Plasmon-enhanced high-harmonic generation from silicon[J]. Nature Physics, 2017, 13:659-662. doi: 10.1038/nphys4087
    帕拉斯·N·普拉萨德.纳米光子学[M].西安:西安交通大学出版社, 2010.

    PARAS N. PRASAD. Nanophotonics[M]. Xi'an:Xi'an Jiaotong University Press, 2010.
    ZHU W, ESTEBAN R, BORISOV A G, et al.. Quantum mechanical effects in plasmonic structures with subnanometre gaps[J]. Nature Communications, 2016, 7:11495. doi: 10.1038/ncomms11495
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(20)  / Tables(1)

    Article views (1914) PDF downloads(533) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint