Volume 11 Issue 1
Feb.  2018
Turn off MathJax
Article Contents
GONG Shuang, TIAN Jin-rong, LI Ke-xuan, GUOYU He-yang, XU Chang-xing, SONG Yan-rong. Advances in new two-dimensional materials and its application in solid-state lasers[J]. Chinese Optics, 2018, 11(1): 18-30. doi: 10.3788/CO.20181101.0018
Citation: GONG Shuang, TIAN Jin-rong, LI Ke-xuan, GUOYU He-yang, XU Chang-xing, SONG Yan-rong. Advances in new two-dimensional materials and its application in solid-state lasers[J]. Chinese Optics, 2018, 11(1): 18-30. doi: 10.3788/CO.20181101.0018

Advances in new two-dimensional materials and its application in solid-state lasers

doi: 10.3788/CO.20181101.0018
Funds:

National Natural Science Foundation of China 61575011

Basic Research Foundation of Beijing University of Technology X3006111201501

More Information
  • Corresponding author: TIAN Jin-rong, E-mail:jrtian@bjut.edu.cn
  • Received Date: 05 Sep 2017
  • Rev Recd Date: 26 Oct 2017
  • Publish Date: 01 Feb 2018
  • The applications and advances of new two-dimensional materials as saturable absorbers in solid-state lasers are introduced in this paper. The characteristics and advantages of two-dimensional materials are briefly summarized. Taking the new two-dimensional materials such as graphene, topological insulator, transition metal dichalcogenides and black phosphorus as examples, the Q-switched and mode-locked processes in solid-state lasers are analyzed, which reveals the promising future of new-type two-dimensional materials for the applications in the research of pulsed solid-state lasers. The combination of solid-state lasers and two-dimensional materials can further improve the research of two-dimensional materials and is expected to develop a large number of new solid-state lasers and used as a base light source in many areas to promote the developments of related fields.

     

  • loading
  • [1]
    ZAYHOWSKI J. Q-switched microchip lasers find real-world application[J]. Laser Focus World, 1999, 35(8):129-136. https://www.ll.mit.edu/.../pdf/vol03_no3/3.3.6.microchiplaser.pdf
    [2]
    WILLIAMS J A, FRENCH P M, TAYLOR J R, et al.. Passive mode locking of a cw energy-transfer dye laser operating in the infrared near 800 nm[J]. Opt. Lett., 1988, 13(10):811-813. doi: 10.1364/OL.13.000811
    [3]
    朱启海, 赵长明, 张逸辰, 等.激光电池技术进展[J].光学 精密工程, 2016, 24(10):316-322. http://d.g.wanfangdata.com.cn/Periodical_kjxx-xsb200829046.aspx

    ZHU Q H, ZHAO CH M, ZHANG Y CH, et al. Development of laser cell technology[J]. Optics and Precision Engineering, 2016, 24(10):316-322.(in Chinese) http://d.g.wanfangdata.com.cn/Periodical_kjxx-xsb200829046.aspx
    [4]
    曾飞, 高世杰, 伞晓刚, 张鑫, 等. 机载激光通信系统发展现状与趋势[J]. 中国光学, 2016, 9(1): 65-73. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zgga201601009&dbname=CJFD&dbcode=CJFQ

    ZENG F, GAO SH J, SAN X G, et al. . Development status and trend of airborne laser communication terminals[J]. Chinese Optics, 2016, 9(1): 65-73. (in Chinese) http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zgga201601009&dbname=CJFD&dbcode=CJFQ
    [5]
    KELLER U, MILLER D A, BOYD G D, et al.. Solid-state low-loss intracavity saturable absorber for Nd: YLF lasers:an antiresonant semiconductor Fabry-Perot saturable absorber[J]. Opt. Lett., 1992, 17(7):505-507. doi: 10.1364/OL.17.000505
    [6]
    SCHMIDT W, FER S C H, et al.. Self-mode-locking of dye-lasers with saturated absorbers[J]. Phys. Lett. A, 1968, 26(11):558-559. doi: 10.1016/0375-9601(68)90546-X
    [7]
    SARUKUDA N, ISHIDA Y, YANAGAWA T, et al.. All solid state CW passively mode locked Ti:sapphire laser using a colored glass filter[J]. Appl. Phys. Lett., 1990, 57(3):229-230. doi: 10.1063/1.103724
    [8]
    JABCZYN J K, AGNESI A, GUANDALINI A, et al.. Application of V3+: YAG crystals for Q-switching and mode-locking of 1.3-μm diode-pumped neodymium lasers[J]. Opt. Eng., 2001, 40(12):2802-2811. doi: 10.1117/1.1418716
    [9]
    KELLER U, WEINGARTEN K J, KÄRTNER F X, et al.. Semiconductor saturable absorber mirrors(SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers[J]. IEEE J. Sel. Top. Quantum Electron., 1996, 2(3):435-453. doi: 10.1109/2944.571743
    [10]
    SET S Y, YAGUCHI H, TANAKA Y, et al.. Laser mode locking using a saturable absorber incorporating carbon nanotubes[J]. J. Lightwave Technol., 2004, 22(1):51. doi: 10.1109/JLT.2003.822205
    [11]
    RSCHIBLI T, MINOSHIMA K, KATAURA H, et al.. Ultrashort pulse-generation by saturable absorber mirrors based on polymer-embedded carbon nanotubes[J]. Opt. Express, 2005, 13(20):8025-8031. doi: 10.1364/OPEX.13.008025
    [12]
    SCHMIDT A, RIVIER S, STEINMEYER G, et al.. Passive mode locking of Yb: KLuW using a single-walled carbon nanotube saturable absorber[J]. Opt. Lett., 2008, 33(7):729-731. doi: 10.1364/OL.33.000729
    [13]
    CHO W, YIM J, CHOI S, et al.. Boosting the nonlinear optical response of carbon nanotube saturable absorbers for broadband mode-locking of bulk lasers[J]. Adv. Funct. Mater., 2010, 20(12):1937-1943. doi: 10.1002/adfm.v20:12
    [14]
    WANG F, ROZHIN A G, SCARDACI V, et al.. Wideband-tuneable nanotube mode-locked fibre laser[J]. Nat. Nanotechnol., 2008, 3(12):738-742. doi: 10.1038/nnano.2008.312
    [15]
    GEIM K, NOVOSELOV K S, et al.. The rise of graphene[J]. Nat. Materials, 2007, 6:183-191. doi: 10.1038/nmat1849
    [16]
    CASTRO NETO A H, GUINEA F, PERES N M R, et al.. The electronic properties of grapheme[J]. Rev. Mod. Phys., 2009, 81(1):109-162. doi: 10.1103/RevModPhys.81.109
    [17]
    BREUSING M, ROPERS C, ELSAESSER T, et al.. Ultrafast carrier dynamics in graphite[J]. Phys. Rev. Lett., 2009, 102(8):086809. doi: 10.1103/PhysRevLett.102.086809
    [18]
    BONACCORSO F, SUN Z, HASAN T. Graphene photonics and optoelectronics[J]. Nat. Photonics, 2010, 4(9):611-22. doi: 10.1038/nphoton.2010.186
    [19]
    ZHANG H, TANG D Y, ZHAO L M, et al.. Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene[J]. Opt. Express, 2009, 17(20):17630-17635. doi: 10.1364/OE.17.017630
    [20]
    TAN W D, SU C Y, KNIZE R J, et al.. Mode locking of ceramic Nd: yttrium aluminum garnet with graphene as a saturable absorber[J]. Appl. Phys. Lett., 2010, 96(3):031106. doi: 10.1063/1.3292018
    [21]
    CHO W B, KIM J W, LEE H W, et al.. High-quality, large-area monolayer graphene for efficient bulk laser mode-locking near 1.25 μm[J]. Opt. Lett., 2011, 36(20):4089-4091. doi: 10.1364/OL.36.004089
    [22]
    HERNANDEZ Y, NICOLOSI V, LOTYA M, et al.. High-yield production of graphene by liquid-phase exfoliation of graphite[J]. Nat. Nanotechnol., 2008, 3(9):563. doi: 10.1038/nnano.2008.215
    [23]
    BOURLINOS A B, GEOGALILAS V, ZBORIL R, et al.. Pyrolytic formation and photoluminescence properties of a new layered carbonaceous material with graphite oxide-mimicking characteristics[J]. Carbon, 2009, 47(2):1841. https://www.sciencedirect.com/science/article/pii/S0008622308005873
    [24]
    XU J L, LI X L, WU Y Z, et al.. Graphene saturable absorber mirror for ultra-fast-pulse solid-state laser[J]. Opt. Lett., 2011, 36(10):1948-1950. doi: 10.1364/OL.36.001948
    [25]
    XU J L, LI X L, HAO X P, et al.. Performance of large-area few-layer graphene saturable absorber in femtosecond bulk laser[J]. Appl. Phys. Lett., 2011, 99(26):261107. doi: 10.1063/1.3672213
    [26]
    XU J L, LI X L, HE J L, et al.. Efficient graphene Q switching and mode locking of 1.34 μm neodymium lasers[J]. Opt. Lett., 2012, 37(13):2652-2654. doi: 10.1364/OL.37.002652
    [27]
    BAEK I H, LEE H W, BAE S K, et al.. Efficient mode-locking of sub-70-fs Ti:sapphire laser by graphene saturable absorber[J]. Appl. Phys. Express, 2012, 5(3):032701. doi: 10.1143/APEX.5.032701
    [28]
    KIM J W, CHOI S Y, JUNG B H, et al.. Applicability of graphene flakes as saturable absorber for bulk laser mode-locking[J]. Appl. Phys. Express, 2012, 6(6):032704. https://www.researchgate.net/publication/258748689_Applicability_of_Graphene_Flakes_as_Saturable_Absorber_for_Bulk_Laser_Mode-Locking
    [29]
    XU S C, MAN B Y, JIANG S Z, et al.. Watt-level passively Q-switched mode-locked YVO4 /Nd: YVO4 laser operating at 1.06 μm using graphene as a saturable absorber[J]. Opt. Laser Technol., 2014, 56(3):393-397. https://www.sciencedirect.com/science/article/pii/S0030399214003004
    [30]
    TOLSTIK N, SOROKIN E, SOROKINA I T. Graphene mode-locked Cr: ZnS laser with 41 fs pulse duration[J]. Opt. Express, 2014, 22(5):5564-5571. doi: 10.1364/OE.22.005564
    [31]
    TOLSTIK N, POSPISCHIL A, SOROKIN E, et al.. Graphene mode-locked Cr: ZnS chirped-pulse oscillator[J]. Opt. Express, 2014, 22(6):7284-7289. doi: 10.1364/OE.22.007284
    [32]
    XU S C, MAN B Y, JIANG S Z, et al.. Sapphire-based graphene saturable absorber for long-time working femtosecond lasers[J]. Opt. Lett., 2014, 39(9):2707-2710. doi: 10.1364/OL.39.002707
    [33]
    XU S C, MAN B Y, JIANG S Z, et al.. Direct growth of graphene on quartz substrate as saturable absorber for femtosecond solid-state laser[J]. Laser Phys. Lett., 2014, 11(8):085801. doi: 10.1088/1612-2011/11/8/085801
    [34]
    MA J, XIE G Q, LV P, et al.. Wavelength versatile graphene gold film saturable absorber mirror for ultra-broadband mode-locking of bulk lasers[J]. Sci. Rep., 2014, 4(6):6186. https://www.researchgate.net/publication/262581847_Wavelength-Versatile_Graphene-Gold_Film_Saturable_Absorber_Mirror_for_Ultra-Broadband_Mode-Locking_of_Bulk_Lasers
    [35]
    PANA S D, CUI L, LIU J Q, et al.. Passively Q-switched mode-locking Nd: GdVO4 laser with a chemically reduced graphene oxide saturable absorber[J]. Opt. Mater. Express, 2014, 38(20):42-45. https://www.sciencedirect.com/science/article/pii/S0030402615013807
    [36]
    HUANG Q J, JI W, JIANG S Z, et al.. Graphene absorber for passive mode-locking Nd: YVO4 laser[J]. Optik, 2015, 126(19):1844-1847. doi: 10.1016/j.ijleo.2015.05.016
    [37]
    GAO S. Diode-end-pumped, passively Q-switched, dual-wavelength, Nd: YAG crystal laser with monolayer graphene as saturable absorber operating at 1319 and 1338 nm[J]. Can. J. Physiol., 2016, 94(13):389-392.
    [38]
    MA J, HUANG H T, NING K J, et al.. Generation of 30 fs pulses from a diode-pumped graphene mode-locked Yb: CaYAlO4 laser[J]. Opt. Lett., 2016, 41(5):890-893. doi: 10.1364/OL.41.000890
    [39]
    LIN W M, DUAN X M, CUI Z, et al.. A passively Q-switched Ho: YVO4 laser at 2.05 μm with grapheme saturable absorber[J]. Appl. Sci, 2016, 6(5):128. https://www.researchgate.net/publication/224193471_Diode-pumped_passively_Q-switched_NdLu05Y05VO_4_laser_at_134_mm_with_Co2LaMgAl11O_19_as_the_saturable_absorber
    [40]
    CUI Z, CHEN Y, YAO B Q, et al.. Passively Q-switched Ho: YAG laser with multilayer graphene-based saturable absorber[J]. Chin. J. Lumin., 2016, 37(6):697. http://www.en.cnki.com.cn/Article_en/CJFDTotal-FGXB201606010.htm
    [41]
    CHO W B, CHOI S Y, ZHU C H, et al.. Graphene mode-locked femtosecond Cr2+: ZnS laser with ~300 nm tuning range[J]. Opt. Express, 2016, 24(18):20774-20780. doi: 10.1364/OE.24.020774
    [42]
    LIN H Y, ZHAO M J, LIN H J, et al.. Graphene-oxide as saturable absorber for a 1342 nm Q-switched Nd: YVO4 laser[J]. Optik, 2017, 135(2):129-133. https://es.scribd.com/doc/38529519/Lasers-and-Coherent-Light-Sources
    [43]
    CANBAZ F, KAKENOV N, KOCABAS C, et al.. Generation of sub-20-fs pulses from a graphene mode-locked laser[J]. Opt. Express, 2017, 25(3):2834-2839. doi: 10.1364/OE.25.002834
    [44]
    HASAN M Z, KANE C L, et al.. Colloquium:topological insulators[J]. Rev. Mod. Phys., 2010, 82(4):3045-3067. doi: 10.1103/RevModPhys.82.3045
    [45]
    LIU J W, HSIEH T H, WEI P, et al.. Spin-filtered edge states with an electrically tunable gap in a two-dimensional topological crystalline insulator[J]. Nat. Mater., 2014, 13(2):178-183. doi: 10.1038/nmat3828
    [46]
    TANG P H, ZHANG X Q, ZHAO C J, et al.. Topological Insulator: Bi2Te3 saturable absorber for the passive Q-switching operation of an in-band pumped 1645-nm Er: YAG ceramic laser[J]. IEEE Photonics J., 2013, 5(2):1500707. doi: 10.1109/JPHOT.2013.2250494
    [47]
    YU H H, ZHANG H, WANG Y C, et al.. Topological insulator as an optical modulator for pulsed solid-state lasers[J]. Laser Photonics Rev., 2013, 7(6):77-83. doi: 10.1002/lpor.201300084
    [48]
    WANG B L, YU H H, ZHANG H, et al.. Topological insulator simultaneously Q-switched dual-wavelength Nd: Lu2O3 laser[J]. IEEE Photonics J., 2014, 6(3):1-7. http://ieeexplore.ieee.org/document/6807511/
    [49]
    HU M T, LIU J H, TIAN J R, et al.. Generation of Q-switched pulse by Bi2Se3 topological insulator in Yb: KGW laser[J]. Laser Phys. Lett., 2014, 11(11):115806. doi: 10.1088/1612-2011/11/11/115806
    [50]
    LI P X, ZHANG G J, ZHANG H, et al.. Q-switched mode-locked Nd: YVO4 laser by topological insulator Bi2Te3 saturable absorber[J]. IEEE Photonic Tech. L., 2014, 26(19):5806. https://www.researchgate.net/publication/283525949_Q-Switched_and_Q-Switched_Mode-Locking_Operation_from_NdYVO_4_Laser_using_Reflective_MoS_2_Saturable_Absorber
    [51]
    XU B, WANG Y, PENG J, et al.. Topological insulator Bi2Se3 based Q-switched Nd: LiYF4 nanosecond laser at 1313 nm[J]. Opt. Express, 2015, 23(6):7674-7680. doi: 10.1364/OE.23.007674
    [52]
    JIA F Q, CHEN H, LIU P, et al.. Nanosecond-Pulsed, dual-wavelength passively Q-switched c-Cut Nd: YVO4 laser using a few-layer Bi2Se3 saturable absorber[J]. IEEE J. Sel. Top. Quantum Electron., 2015, 21(1):369-374. doi: 10.1109/JSTQE.2014.2346612
    [53]
    XU J L, SUN Y J, HE J L, et al.. Ultrasensitive nonlinear absorption response of large-size topological insulator and application in low-threshold bulk pulsed lasers[J]. Sci. Rep., 2015, 5(2):14856. https://www.researchgate.net/profile/Yan_Wang47/publication/282775286_Ultrasensitive_nonlinear_absorption_response_of_large-size_topological_insulator_and_application_in_low-threshold_bulk_pulsed_lasers/links/561db62e08ae50795afd830f.pdf
    [54]
    LIN Y Y, LEE P, XU J L, et al.. High-pulse-energy topological insulator Bi2Te3-based passive Q-switched solid-state laser[J]. IEEE Photonics J., 2016, 8(4):1-10. https://www.researchgate.net/publication/305037539_High-Pulse-Energy_Topological_Insulator_Bi2Te3-Based_Passive_Q-Switched_Solid-State_Laser
    [55]
    KUC A, ZIBOUCHE N, HEINE T, et al.. Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2[J]. Phys. Rev. B, 2011, 83(24):245213. doi: 10.1103/PhysRevB.83.245213
    [56]
    WANG K, WANG J, FAN J, et al.. Ultrafast saturable absorption of two-dimensional MoS2 nanosheets[J]. ACS. Nano, 2013, 7(10):9260-9267. doi: 10.1021/nn403886t
    [57]
    CHEN B H, ZHANG X Y, WAN K, et al.. Q-switched fiber laser based on transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2[J]. Opt. Express, 2015, 23(20):26723-26737. doi: 10.1364/OE.23.026723
    [58]
    XU B, CHENG Y J, WANG Y, et al.. Passively Q-switched Nd: YAlO3 nanosecond laser using MoS2 as saturable absorber[J]. Opt. Express, 2014, 22(23):28934-28940. doi: 10.1364/OE.22.028934
    [59]
    ZHAN Y, WANG L, WANG J Y, et al.. Yb: YAG thin disk laser passively Q-switched by a hydro-thermal grown molybdenum disulfide saturable absorber[J]. Laser Phys., 2015, 25(2):025901. doi: 10.1088/1054-660X/25/2/025901
    [60]
    LOU F, ZHAO R W, HE J L, et al.. Nanosecond-pulsed, dual-wavelength, passively Q-switched ytterbium-doped bulk laser based on few-layer MoS2 saturable absorber[J]. Photon. Res., 2015, 3(2):A25-A29. doi: 10.1364/PRJ.3.000A25
    [61]
    KONG L C, XIE G Q, YUAN P, et al.. Passive Q-switching and Q-switched mode-locking operations of 2 μm Tm: CLNGG laser with MoS2 saturable absorber mirror[J]. Photon. Res., 2015, 3(2):A47-A50. doi: 10.1364/PRJ.3.000A47
    [62]
    ZOU X, LENG Y X, LI Y Y, et al.. Passively Q-switched mode-locked Tm: LLF laser with a MoS2 saturable absorber[J]. Chin. Opt. Lett., 2015, 13(8):081405. doi: 10.3788/COL
    [63]
    LIN T, SUN H, WANG X, et al. Passively Q-switched Nd: YAG laser with a MoS2 solution saturable absorber[J]. Laser Phys., 2015, 25(12):125805. doi: 10.1088/1054-660X/25/12/125805
    [64]
    SUN Y J, XU J L, GAO S F, et al.. Wavelength-tunable, passively Q-switched Yb: Ca3Y2(BO3)4 solid state laser using MoS2 saturable absorber[J]. Mater. Lett., 2015, 160(2):268-270. https://gc.science.nus.edu.sg/biblio/export/bibtex
    [65]
    SUN Y J, XU J L, ZHU Z J, et al.. Comparison of MoS2nanosheets and hierarchical nanospheres in the application of pulsed solid-state lasers[J]. Opt. Mater. Express, 2015, 5(12):2924. doi: 10.1364/OME.5.002924
    [66]
    WANG K, YANG K J, ZHANG X Y, et al. Passively Q-switched laser at 1.3 μm with Few-layered MoS2 saturable absorber[J]. IEEE J. Sel. Top. Quantum Electron., 2017, 23(1):1600205. https://gc.science.nus.edu.sg/biblio/export/bibtex
    [67]
    ZHAO W F, YU H, LIAO M Z, et al.. Large area growth of monolayer MoS2 film on quartz and its use as a saturable absorber in laser mode-locking[J]. Semicond. Sci. Tech., 2017, 32(2):025013. doi: 10.1088/1361-6641/32/2/025013
    [68]
    KASSANI, KHAZAEINEZHAD R, JEONG H, et al.. All-fiber Er-doped Q-switched laser based on tungsten disulfide saturable absorber[J]. Opt. Mater. Express, 2015, 5(2):373-379. doi: 10.1364/OME.5.000373
    [69]
    MAO D, WANG Y, MA C, et al.. WS2 mode-locked ultrafast fiber laser[J]. Sci. Rep., 2015, 5:7965. doi: 10.1038/srep07965
    [70]
    ZHAO G, HAN S, WANG A Z, et al.. Chemical weathering exfoliation of atom-thick transition metal dichalcogenides and their ultrafast saturable absorption properties[J]. Adv. Funct. Mater., 2015, 25(33):5292-5299. doi: 10.1002/adfm.201501972
    [71]
    HOU J, ZHAO G, WU Y Z, et al.. Femtosecond solid state laser based on tungsten disulfide saturable absorber[J]. Opt. Express, 2015, 23(21):27292-27298. doi: 10.1364/OE.23.027292
    [72]
    WANG X, WANG Y G, DUAN L, et al.. Passively Q-switched Nd: YAG laser via a WS2saturable absorber[J]. Opt. Commun., 2016, 367(2):234-238. https://www.sciencedirect.com/science/article/pii/S0030399212001375
    [73]
    TANG W J, WANG Y J, YANG K J, et al.. 1.36 W Passively Q-Switched YVO4/Nd: YVO4 laser with a WS2 saturable absorber[J]. IEEE Photonic. Tech. L., 2017, 29(5):470-473. doi: 10.1109/LPT.2017.2657325
    [74]
    CHURCHILL, HUGH O H, PABLO J H. Two-dimensional crystals:phosphorus joins the family[J]. Nat. Nanotechnol., 2014, 9(5):330-331. doi: 10.1038/nnano.2014.85
    [75]
    ZHANG B, LOU F, ZHAO R, et al. Exfoliated layers of black phosphorus as saturable absorber for ultrafast solid-state laser[J]. Opt. Lett., 2015, 40(16):3691-3694. doi: 10.1364/OL.40.003691
    [76]
    MA J, LU S, GUO Z, et al.. Few-layer black phosphorus based saturable absorber mirror for pulsed solid-state lasers[J]. Opt. Express, 2015, 23(17):22643-22648. doi: 10.1364/OE.23.022643
    [77]
    WANG Z W, ZHAO R W, HE J L, et al.. Multi-layered black phosphorus as saturable absorber for pulsed Cr: ZnSe laser at 2.4 μm[J]. Opt. Express, 2016, 24(2):1598-1603. doi: 10.1364/OE.24.001598
    [78]
    LU D Z, PAN Z B, ZHANG R, et al.. Passively Q-switched ytterbium-doped ScBO3 laser with black phosphorus saturable absorber[J]. Opt. Eng., 2016, 55(8):081312. doi: 10.1117/1.OE.55.8.081312
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article views(2823) PDF downloads(938) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return