Volume 11 Issue 1
Feb.  2018
Turn off MathJax
Article Contents
LI Chen, STOIAN Razvan, CHENG Guang-hua. Laser-induced periodic surface structures with ultrashort laser pulse[J]. Chinese Optics, 2018, 11(1): 1-17. doi: 10.3788/CO.20181101.0001
Citation: LI Chen, STOIAN Razvan, CHENG Guang-hua. Laser-induced periodic surface structures with ultrashort laser pulse[J]. Chinese Optics, 2018, 11(1): 1-17. doi: 10.3788/CO.20181101.0001

Laser-induced periodic surface structures with ultrashort laser pulse

doi: 10.3788/CO.20181101.0001
Funds:

National Natural Science Foundation of China 61378019

National Natural Science Foundation of China 61223007

National Natural Science Foundation of China 61705124

More Information
  • Corresponding author: CHENG Guang-hua, E-mail: gcheng@opt.ac.cn
  • Received Date: 11 Oct 2017
  • Rev Recd Date: 15 Nov 2017
  • Publish Date: 01 Feb 2018
  • Laser-induced periodic surface structures(LIPSS) have a wide application prospect from sensing to solar power generation and photocatalysis mainly due to its nanoscale features and self-repetitive microscopic patterns. In this review we discuss various complex process of the interaction of ultrafast laser with matter during the formation of LIPSS, emphasizing the role of transient optical properties and surface structural changes. Then several representative LIPSS formation mechanisms are summarized and their respective advantages and disadvantages are discussed. Next, the change of materials during the formation of LIPSS is introduced, including the change of chemical composition, crystal structure and surface microstructure. Finally, the application of LIPSS in material surface treatment, optics and mechanics is reviewed.

     

  • loading
  • [1]
    BIRNBAU M. Semiconductor surface damage produced by ruby lasers[J]. Journal of Applied Physics, 1965, 36(11):3688-3689. doi: 10.1063/1.1703071
    [2]
    ZHANG W, CHENG G H, FENG Q, et al.. Abrupt transition from wavelength structure to subwavelength structure in a single-crystal superalloy induced by femtosecond laser[J]. Applied Surface Science, 2011, 257(9):4321-4324. doi: 10.1016/j.apsusc.2010.12.050
    [3]
    DERRIENA TJ-Y, TORRES R, SARNET T, et al.. Formation of femtosecond laser induced surface structures on silicon: Insights from numerical modeling and single pulse experiments[J]. Applied Surface Science, 2012, 258:9487-9490. doi: 10.1016/j.apsusc.2011.10.084
    [4]
    GOLOSOV E V, IONIN A A, KOLOBOV Y R, et al.. Formation of periodic nanostructures on aluminum surface by femtosecond laser pulses[J]. Nanotechnologies in Russia, 2011, 6:237-243. doi: 10.1134/S199507801102008X
    [5]
    BOROWIEC A, HAUGEN H K. Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses[J]. Applied Physics Letters, 2003, 82(25):4462-4464. doi: 10.1063/1.1586457
    [6]
    BONSE J, BAUDACH S, KRUGER J, et al.. Femtosecond laser ablation of silicon-modification thresholds and morphology[J]. Applied Physics A, 2002, 74(1):19-25. doi: 10.1007/s003390100893
    [7]
    COSTACHE F, ARGUIROVA S K, REIF J. Sub-damage-threshold femtosecond laser ablation from crystalline Si:surface nanostructures and phase transformation[J]. Applied Physics A, 2004, 79(4):1429-1432. doi: 10.1007/s00339-004-2803-y
    [8]
    HSU E M, CRAWFORD T H R, TIEDJE H F, et al.. Periodic surface structures on gallium phosphide after irradiation with 150 fs-7 ns laser pulses at 800 nm[J]. Applied Physics Letters, 2007, 91:111102. doi: 10.1063/1.2779914
    [9]
    DUMITRU G, ROMANO V, WEBER H P, SENTIS M, et al.. Ablation of carbide materials with femtosecond pulses[J]. Applied Surface Science, 2003, 205:80-85. doi: 10.1016/S0169-4332(02)00906-6
    [10]
    BAUDACH S, BONSE J, KAUTEK W. Ablation experiments on polyimide with femtosecond laser pulses[J]. Applied Physics A, 1999, 69(Suppl.):S395-S398. doi: 10.1007/s003390051424.pdf
    [11]
    KANEKO S, ITO T, AKIYAMA K, et al.. Nano-strip grating lines self-organized by high speed scanning CW laser[J]. Nanotechnology, 2011, 22:175307. doi: 10.1088/0957-4484/22/17/175307
    [12]
    LI C, CHENG G H, COLOMBIER J P, et al.. Impact of evolving surface nanoscale topologies in femtosecond laser structuring of Ni-based superalloy CMSX-4[J]. Journal of Optics, 2016, 18(1):015402. doi: 10.1088/2040-8978/18/1/015402
    [13]
    YOUNG J F, PRESTON J S, DRIEL H M, et al.. Sipe. Laser-induced periodic surface structure.Ⅱ.experiments on Ge, Si, Al, and brass[J]. Physical Review B, 1983, 27(2):1155-1172. doi: 10.1103/PhysRevB.27.1155
    [14]
    SIPE J E, YOUNG. F, PRESTON J S, et al.. van Driel. Laser-induced periodic surface structure.I[J]. Theory. Physical Review B, 1983, 27:1141-1154. doi: 10.1103/PhysRevB.27.1141
    [15]
    SAKABE S, HASHIDA M, TOKITA S, et al.. Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse[J]. Physical Review B, 2009, 79(3):033409. http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT05000008000002000081000001&idtype=cvips&gifs=Yes
    [16]
    OKAMURO M, HASHIDA M, MIYASAKA Y, et al.. Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation[J]. Physical Review B, 2010, 82(16):165417. doi: 10.1103/PhysRevB.82.165417
    [17]
    HWANG T Y, GUO C. Angular effects of nanostructure-covered femtosecond laser induced periodic surface structures on metals[J]. Journal of Applied Physics, 2010, 108(7):073523. doi: 10.1063/1.3487934
    [18]
    VOROBYEV A Y, MAKIN V S, GUO C. Periodic ordering of random surface nanostructures induced by femtosecond laser pulses on metals[J]. Journal of Applied Physics, 2007, 101(3):034903. doi: 10.1063/1.2432288
    [19]
    VOROBYEV A Y, GUO C. Femtosecond laser-induced periodic surface structure formation on tungsten[J]. Journal of Applied Physics, 2008, 104(6):063523. doi: 10.1063/1.2981072
    [20]
    COLOMBIER J P, GARRELIE F, BRUNET P, et al.. Plasmonic and hydrodynamic effects in ultrafast laser-induced periodic surface structures on metals[J]. Journal of Laser Micro/Nanoengineering, 2012, 7(3):362-368. https://www.researchgate.net/publication/258801411_Plasmonic_and_Hydrodynamic_Effects_in_Ultrafast_Laser-Induced_Periodic_Surface_Structures_on_Metals
    [21]
    VARLAMOVA O, REIF J, VARLAMOV S, et al.. Progress in Nonlinear Nano-optics(Ed. by Sakabe Shuji, Lienau Christoph, Grunwald and R diger)[M]. Springer, 2015:4.
    [22]
    WANG J, GUO C. Ultrafast dynamics of femtosecond laser-induced periodic surface pattern formation on metals[J]. Applied Physics Letters, 2005, 87(25):251914. doi: 10.1063/1.2146067
    [23]
    WANG J, GUO C. Numerical study of ultrafast dynamics of femtosecond laser-induced periodic surface structure formation on noble metals[J]. Journal of Applied Physics, 2007, 102(5):053522. doi: 10.1063/1.2776004
    [24]
    GARRELIE F, COLOMBIE J P, PIGEON F, et al. Parriaux. Evidence of surface plasmon resonance in ultrafast laser-induced ripples[J]. Optics Express, 2011, 19(10): 9035-9043. doi: 10.1364/OE.19.009035
    [25]
    TSUKAMOTO M, ASUKA K, NSKSNO H, et al.. Periodic microstructures produced by femtosecond laser irradiationon titanium plate[J]. Vacuum, 2006, 80(11):1346-1350. https://www.researchgate.net/publication/256912032_Periodic_microstructures_produced_by_femtosecond_laser_irradiation_on_titanium_plate
    [26]
    BONSE J, KRUGER J, HOHMS, et al.. Femtosecond laser-induced periodic surface structures[J]. Journal of Laser Applications, 2012, 24(4):042005. doi: 10.2351/1.4712171
    [27]
    GOLOSOV E V, EMELYANOV V I, IONIN A A, et al.. Femtosecond laser writing of subwave one-dimensional quasiperiodic nanostructures on a titanium surface[J]. JETP Letters, 2009, 90(2):107-110. doi: 10.1134/S0021364009140057
    [28]
    VOROBYEY A Y, GUO C. Femtosecond laser structuring of titanium implants[J]. Applied Surface Science, 2007, 253:7272-7280. doi: 10.1016/j.apsusc.2007.03.006
    [29]
    ZHAO Q Z, MALZER S, WANG L J. Formation of subwavelength periodic structures on tungsten induced by ultrashort laser pulses[J]. Optics Letters, 2007, 32(13):1932-1934. doi: 10.1364/OL.32.001932
    [30]
    HUANG M, ZHAO F, CHENG Y, et al.. Origin of laser-induced near-subwavelength ripples:interference between surface plasmons and incident laser[J]. ACS Nano, 2009, 3:4062-4070. doi: 10.1021/nn900654v
    [31]
    DUSSER B, SAGAN Z, SODER H, et al.. Controlled nanostructures formation by ultra fast laser pulses for color marking[J]. Optics Express, 2010, 18(3):2913-2924. doi: 10.1364/OE.18.002913
    [32]
    BYSKOV-NIELSEN J, SAVOLAINEN J M, CHRISTENSEN M S, et al.. Ultra-short pulse laser ablation of metals: threshold fluence, incubation coefficient and ablation rates[J]. Applied Physics A, 2010, 101(1):97-101. doi: 10.1007/s00339-010-5766-1
    [33]
    BONSE J, ROSENFELD A, KRUGER J. On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structuresupon irradiation of silicon by femtosecond-laser pulses[J]. Journal of Applied Physics, 2009, 106(10):104910. doi: 10.1063/1.3261734
    [34]
    DERRIEN T J Y, ITINA T E, TORRE R, et al.. Possible surface plasmon polariton excitation under femtosecond laser irradiation of silicon[J]. Journal of Applied Physics, 2013, 114:083104. doi: 10.1063/1.4818433
    [35]
    BONSE J, KRUGER J. Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon[J]. Journal of Applied Physics, 2010, 108(3):034903. doi: 10.1063/1.3456501
    [36]
    BINSE J, ROSENFELD A, KRUGER J. Implications of transient changes of optical and surface properties of solids during femtosecond laser pulse irradiation to the formation of laser-induced periodic surface structures[J]. Applied Surface Science, 2011, 257:5420-5423. doi: 10.1016/j.apsusc.2010.11.059
    [37]
    SKOLSKI J Z P, ROMER G R B E, OBONA J V, et al.. Laser-induced periodic surface structures:fingerprints of light localization[J]. Physical Review B, 2012, 85(7):075320. doi: 10.1103/PhysRevB.85.075320
    [38]
    SKOLSKI J Z P, ROMER G R B E, OBONA J V, et al.. Inhomogeneous absorption of laser radiation:trigger of LIPSS formation[J]. Journal of Laser Micro/Nanoengineering, 2013, 8(1):1-5. https://www.researchgate.net/publication/275816703_Inhomogeneous_Absorption_of_Laser_RadiationTrigger_of_LIPSS_Formation
    [39]
    BONSE J, MUNZ M, STURM H. Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses[J]. Journal of Applied Physics, 2005, 97(1):013538. doi: 10.1063/1.1827919
    [40]
    DUFFT D, ROSENFELD A, DAS S K, et al.. Femtosecond laser-induced periodic surface structures revisited:a comparative study on ZnO[J]. Journal of Applied Physics, 2009, 105(3):034908. doi: 10.1063/1.3074106
    [41]
    WU Q, MA Y, FANG R, et al.. Femtosecond laser-induced periodic surface structure on diamond film[J]. Applied Physics Letters, 2003, 82(11):1703-1705. doi: 10.1063/1.1561581
    [42]
    HOHM S, ROSENFELD A, KRUGER J, et al.. Femtosecond laser-induced periodic surface structures on silica[J]. Journal of Applied Physics, 2012, 112:014901. doi: 10.1063/1.4730902
    [43]
    ROHLOFF M, DAS S K, HOHM S, et al.. Formation of laser-induced periodic surface structures on fused silica upon multiple cross-polarized double-femtosecond-laserpulse irradiation sequences[J]. Journal of Applied Physics, 2011, 110(1):014910, . doi: 10.1063/1.3605513
    [44]
    SUN Q, LIANG F, VALLEE R, et al.. Nanograting formation on the surface of silica glass by scanning focused femtosecond laser pulses[J]. Optics Letters, 2008, 33(22):2713-2715. doi: 10.1364/OL.33.002713
    [45]
    ROSENFELD A, ROHLOF F M. Formation of laser-induced periodic surface structures on fused silica upon multiple parallel polarized double-femtosecond-laser-pulse[J]. Applied Surface Science, 2012, 258:9233-9236. doi: 10.1016/j.apsusc.2011.09.076
    [46]
    YAMAGUCHI M, UENO S, KUMA R. Raman spectroscopic study of femtosecond laser-induced phase transformation associated with ripple formation on single-crystal SiC[J]. Applied Physics A, 2010, 99(1):23-27. doi: 10.1007/s00339-010-5569-4
    [47]
    MIYAJI G, MIYAZAKI K. Origin of periodicity in nanostructuring on thin film surfaces ablated with femtosecond laser pulses[J]. Optics Express, 2008, 16(20):16265-16271. doi: 10.1364/OE.16.016265
    [48]
    ZHOU G S, FAUCHET P M, SIEGMAN A E. Growth of periodic surface structures on solids during laser illumination[J]. Physical Review B, 1982, 26(10):5366. doi: 10.1103/PhysRevB.26.5366
    [49]
    SIEGMAN A E, FAUCHET P M. Stimulated wood's anomalies on laser-illuminated surfaces[J]. IEEE Journal of Quantum Electronics, 1986, 22:1384-1403. doi: 10.1109/JQE.1986.1073133
    [50]
    ZHANG H, COLOMBIER J P, LI C, et al.. Coherence in ultrafast laser-induced periodic surface structures[J]. Physical Review B, 2015, 92(17):174109. doi: 10.1103/PhysRevB.92.174109
    [51]
    YEE K S. Numerical solution of initial boundary value problem involving Maxwell's equations in isotropic media[J]. IEEE Transactions on Antennas and Propagation, 1966, 14(3):302-307. doi: 10.1109/TAP.1966.1138693
    [52]
    SKOLSKI J Z P, R MER G R B E, VINCENC OBONA J, et al.. Huis in't Veld. Modeling laser-induced periodic surface structures:finite-difference time-domain feedback simulations[J]. Journal of Applied Physics, 2014, 115(10):103102. doi: 10.1063/1.4867759
    [53]
    KOKHANOVSKY A A. Light scattering and remote sensing of atmosphere and surface[J]. Light Scattering Reviews, 2012, 6, Springer. http://ci.nii.ac.jp/ncid/BB07921055
    [54]
    TAFLOVE A, HAGNESS S C. Computational electrodynamics: the finite-difference time-domain method[R]. 3rd ed, Artech House, Norwood, 2005. https://www.researchgate.net/publication/202924435_Computational_Electrodynamics
    [55]
    REIF J, COSTACHE F, HENYK M, et al.. Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics[J]. Applied Surface Science, 2002, 197:891-895. http://www.sciencedirect.com/science/article/pii/S0169433202004506
    [56]
    REIF J, VARLAMOVA O, VARLAMOV S, et al.. The role of asymmetric excitation in self-organized nanostructure formation upon femtosecond laser ablation[J]. Applied Physics A, 2011, 104(3):969-973. doi: 10.1007/s00339-011-6472-3
    [57]
    BRADLEY R M, HARPER J M E. Theory of ripple topography induced by ion bombardment[J]. Journal of Vacuum Science & Technology A, 1988, 6:2390. https://www.researchgate.net/publication/224451190_Theory_of_ripple_topography_induced_by_ion_bombardment
    [58]
    REIF J, COSTACHE F, BESTEHORN M. Chapter 9 in Recent Advance in Laser Processing of Materials[M]//Ed. by J. Periere, E. Millon, E. Fogarassy. Amsterdam, Elsevier, 2006: 275.
    [59]
    VARLAMOVA O, RATZKE M, REIF J. Feedback effect on the self-organized nanostructures formation on silicon upon femtosecond laser ablation[J]. Solid State Phenomena, 2010, 156:535-540. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.430.3517&rep=rep1&type=pdf
    [60]
    KURAMOTO Y, TSUZUKI T. Persistent propagation of concentration waves in dissipative media far from thermal equilibrium[J]. Progress of Theoretical Physics, 1976, 55(2):356-369. doi: 10.1143/PTP.55.356
    [61]
    SIVASHINSKY G I. On self-turbulization of a laminar flame[J]. Acta Astronautica, 1979, 6(5):569-591. https://www.sciencedirect.com/science/article/pii/0094576579900195
    [62]
    BENNETT T D, KRAJNOVICH D J, GRIGOROPOULOS C P, et al.. Marangoni mechanism in pulsed laser texturing of magnetic disk substrates[J]. J. Heat Transfer, 1997, 119(3):589-596. doi: 10.1115/1.2824146
    [63]
    GETLING A V. Rayleigh-B nard convection: structures and dynamics[J]. World Scientific, Singapore, 1998. http://www.worldcat.org/title/rayleigh-benard-convection-structures-and-dynamics/oclc/38130717
    [64]
    BUIVIDAS R, ROSA L, LIUPAS R, et al.. Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback[J]. Nanotechnology, 2011, 22(5):055304. doi: 10.1088/0957-4484/22/5/055304
    [65]
    HOHM S, HERZLIEB M, ROSENFELD A, et al.. Dynamics of the formation of laser-induced periodic surface structures(LIPSS) upon femtosecond two-color double-pulse irradiation of metals, semiconductors, and dielectrics[J]. Applied Surface Science, In Press, 2015, doi: 10.1016/j.apsusc.2015.12.129.
    [66]
    MAO X L, CIOCAN A C, RUSSO R E. Preferential vaporization during laser ablation inductively coupled plasma atomic emission spectroscopy[J]. Applied Spectroscopy, 1998, 52(7):913-918. doi: 10.1366/0003702981944706
    [67]
    CLAUER A H, FAIRRAND B P, WILCOX B A. Laser shock hardening of weld zones in aluminum alloys[J]. Metallurgical and Materials Transactions A, 1977, 8(12):1871-1876. doi: 10.1007/BF02646559
    [68]
    COLOMBIER J P, GARRELIE F, FAURE N, et al.. Effects of electron-phonon coupling and electron diffusion on ripples growth on ultrafast-laser-irradiated metals[J]. Journal of Applied Physics, 2012, 111(2):024902. doi: 10.1063/1.3676221
    [69]
    BECKFORD S, LANGSTON N, ZOU M, et al.. Fabrication of durable hydrophobic surfaces through surface texturing[J]. Applied Surface Science, 2011, 257:5688-5693. doi: 10.1016/j.apsusc.2011.01.074
    [70]
    SCHULZE A, MAITZ M F, ZIMMERMANN R, et al.. Permanent surface modification by electron-beam-induced grafting of hydrophilic polymers to PVDF membranes[J]. RSC Advances, 2013, 3:22518-22526. doi: 10.1039/c3ra43659d
    [71]
    ROMERO L A, DICKEY F. Lossless laser beam shaping[J]. Journal of the Optical Society of America A, 1996, 13(4):751-760. doi: 10.1364/JOSAA.13.000751
    [72]
    MOMMA C, NOLTE S, KAMLAGE G, et al.. Beam delivery of femtosecond laser radiation by diffractive optical elements[J]. Applied Physics A, 1998, 67(5):517-520. doi: 10.1007/s003390050814
    [73]
    SANNER N, HUOT N, AUDOUARD E, et al.. Programmable focal spot shaping of amplified femtosecond laser pulses[J]. Optics Letters, 2005, 30(12):1479-1481. doi: 10.1364/OL.30.001479
    [74]
    BLOSSEY R. Self-cleaning surfaces-virtual realities[J]. Nature Material, 2003, 2(5):301-306. doi: 10.1038/nmat856
    [75]
    ZORBA V, STRATAKIS E, BARBEROGLOU M, et al.. Tailoring the wetting response of silicon surfaces via fs laser structuring[J]. Applied Physics A, 2008, 93(4):819. doi: 10.1007/s00339-008-4757-y
    [76]
    BARBEROGLOU M, ZORBA V, STRATAKIS E, et al.. Bio-inspired water repellent surfaces produced by ultrafast laser structuring of silicon[J]. Applied Surface Science, 2009, 255(10):5425-5429. doi: 10.1016/j.apsusc.2008.07.130
    [77]
    VOROBYEV A Y, GUO C. Laser turns silicon superwicking[J]. Optics Express, 2010, 18(7):6455-6460. doi: 10.1364/OE.18.006455
    [78]
    GAMALY E, VAILIONIS A, MIZEIKIS V, et al.. Warm dense matter at the bench-top:fs-laser-induced confined micro-explosion[J]. High Energy Density Physics, 2012, 8(1):13-17. doi: 10.1016/j.hedp.2011.10.003
    [79]
    CHARPENTIER T V J, NEVILLE A, MILNER P, et al.. Development of anti-icing materials by chemical tailoring of hydrophobic textured metallic surfaces[J]. Journal of Colloid and Interface Science, 2013, 394:539-544. doi: 10.1016/j.jcis.2012.11.021
    [80]
    DUNN A, WLODARCZYK K L, CARSTENSEN J V, et al.. Laser surface texturing for high friction contacts[J]. Applied Surface Science, 2015, 357:2313-2319. doi: 10.1016/j.apsusc.2015.09.233
    [81]
    ABELN T, KLINK U. Laser strukturieren zur Verbesserung der tribologischen Eigenschaften von Oberfl chen[R]. Proc. of Stuttgarter Lasertage, 2001.
    [82]
    WEIKERT M, DAUSINGER F. Surface structuring, in femtosecond technology for technical and medical applications[R]//Ed. by Dausinger F, Lichtner F, Lubatschowski H. Berlin, Springer-Verlag, 2004: 117-129.
    [83]
    BONSE J, KOTER R, HARTELT M, et al.. Femtosecond laser-induced periodic surface structures on steel and titanium alloy for tribological applications[J]. Applied Physics A, 2014, 117(1):103-110. doi: 10.1007/s00339-014-8229-2
    [84]
    VOROBYEV A Y, GUO C. Colorizing metals with femtosecond laser pulses[J]. Applied Physics Letters, 2008, 92(4):041914. doi: 10.1063/1.2834902
    [85]
    SUGIOKA K, MEUNIER M, PIQUE A. Laser precision microfabrication[M]. Springer Series in Materials Science, 2010, 135, Chapter 4.
    [86]
    VOROBYEV A Y, GUO C. Spectral and polarization responses of femtosecond laser-induced periodic surface structures on metals[J]. Journal of Applied Physics, 2008, 103(4):043513. doi: 10.1063/1.2842403
    [87]
    SANCHEZ F, MORENZA J L, AGUIAR R, et al.. Whiskerlike structure growth on silicon exposed to ArF excimer laser irradiation[J]. Applied Physics Letters, 1996, 69(5):620. doi: 10.1063/1.117926
    [88]
    SHEEHY M A, WINSTON L, CAREY J E, et al.. Role of the background gas in the morphology and optical properties of laser-microstructured silicon[J]. Chemistry of Materials, 2005, 17:3582-3586. doi: 10.1021/cm049029i
    [89]
    VOROBYEV A Y, MAKIN V, GUO C. Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources[J]. Physical Review Letters, 2009, 102(23):234301. doi: 10.1103/PhysRevLett.102.234301
    [90]
    WAN J. Tunable thermal emission at infrared frequencies via tungsten gratings[J]. Optics Communications, 2009, 282(8):1671-1675. doi: 10.1016/j.optcom.2008.12.076
    [91]
    [92]
    TORRES R, VERVISCH V, HALBWAX M, et al.. Femtosecond laser texturization for improvement of photovoltaic cells:black silicon[J]. Journal of Optoelectronics and Advanced Materials, 2010, 12(3):621-625. https://www.researchgate.net/publication/281155493_Femtosecond_laser_texturization_for_improvement_of_photovoltaic_cells_Black_Silicon
    [93]
    KHAKBAZNEJAD A, CHEHROUDI B, BRUNETTE D M, et al.. Effects of titanium-coated micromachined grooved substrata on orienting layers of osteoblast-like cells and collagen fibers in culture[J]. Journal of Biomedical Materials Research Part A, 2004, 70(2):206-218. https://www.researchgate.net/publication/8480132_Effects_of_titanium-coated_micromachined_grooved_substrata_on_orienting_layers_of_osteoblast-like_cells_and_collagen_fibers_in_culture
    [94]
    COCHRAN D L, BUSER D, BRUGGENKATE C M, et al.. The use of reduced healing times on ITI implants with a sandblasted and acid-etched(SLA) surface:early results from clinical trials on ITI SLA implants[J]. Clinical Oral Implants Research, 2002, 13(2):144-153. doi: 10.1034/j.1600-0501.2002.130204.x
    [95]
    YADA S, TERALAWA M. Femtosecond laser induced periodic surface structure on poly-L-lactic acid[J]. Optics Express, 23(5):5694-5703. doi: 10.1364/OE.23.005694
    [96]
    IVANOVA E P, HASAN J, WEBB H K, et al.. Bactericidal activity of black silicon[J]. Nature Communications, 2013, 4:2838. http://www.academia.edu/29179700/Bactericidal_activity_of_black_silicon
    [97]
    MESSAOUDI H, DAS S K, LANGE J, et al.. Femtosecond-laser induced nanostructuring for surface enhanced Raman spectroscopy[J]. Proc. SPIE, 2014, 8972:89720L. doi: 10.1117/12.2035810
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article views(3471) PDF downloads(823) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return