Volume 16 Issue 5
Sep.  2023
Turn off MathJax
Article Contents
XIE Jia-ling, YAN Kai, TAN Jia, CAO Zhao-liang, HAO Xiang. Decoherence of temporal quantum correlation in electrically controllable quantum-dots molecules[J]. Chinese Optics, 2023, 16(5): 1206-1214. doi: 10.37188/CO.EN-2022-0025
Citation: XIE Jia-ling, YAN Kai, TAN Jia, CAO Zhao-liang, HAO Xiang. Decoherence of temporal quantum correlation in electrically controllable quantum-dots molecules[J]. Chinese Optics, 2023, 16(5): 1206-1214. doi: 10.37188/CO.EN-2022-0025

Decoherence of temporal quantum correlation in electrically controllable quantum-dots molecules

doi: 10.37188/CO.EN-2022-0025
Funds:  Supported by National Natural Science Foundation of China (No. 61875145);Jiangsu Key Disciplines of the Fourteenth Five-Year Plan (No.2021135); Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. KYCX23_3312);
More Information
  • Author Bio:

    Xie Jia-ling (1999—), female, born in Nantong, Jiangsu Province, masters student. She received her bachelor's degree from the Yancheng Institute of Technology in 2021. She is mainly engaged in research on quantum optics and quantum information. E-mail: 2392111827@qq.com

    Hao Xiang (1981—), male, born in Huaian, Jiangsu Province, Ph.D., professor and masters supervisor. He received his Ph.D. from the Institute of Modern Optics, Soochow University in 2008. He is mainly engaged in research of quantum optics and quantum information. E-mail: xhao@mail.usts.edu.cn

  • Corresponding author: xhao@mail.usts.edu.cn
  • Received Date: 18 Nov 2022
  • Rev Recd Date: 08 Dec 2022
  • Available Online: 04 Feb 2023
  • The decoherence of temporal quantum correlation is explored in a voltage-controlled quantum dots molecule coupled to a cavity. The temporal correlation in the optoelectronic hybrid system is studied based on Leggett-Garg inequalities. The inequality violations can be interpreted as the existence of temporal quantum correlation during dynamical evolution. The temporal quantum correlation is enhanced by its electron tunnel’s strength and cavity frequency detuning. It is found that there is no temporal quantum correlation in the regions where the values of spatial quantum correlation are zero and the maximal violations occur in conditions with high values of quantum correlation. In contrast, the spatial quantum coherence can still exsit when the value of temporal quantum correlation is zero. The method of open quantum system dynamic is used to study the effect of reservoir memory on temporal quantum correlation. The temporal quantum correlation can be suppressed due to the spontaneous decay of the quantum dots and cavity leakage. These results are helpful for quantum information processing technology in hybrid quantum systems.


  • loading
  • [1]
    HORODECKI R, HORODECKI P, HORODECKI M, et al. Quantum entanglement[J]. Reviews of Modern Physics, 2009, 81(2): 865-942. doi: 10.1103/RevModPhys.81.865
    NIELSEN M A, CHUANG I L. Quantum Computation and Quantum Information[M]. Cambridge: Cambridge University Press, 2010.
    ALICKI R, FANNES M. Entanglement boost for extractable work from ensembles of quantum batteries[J]. Physical Review E, 2013, 87(4): 042123. doi: 10.1103/PhysRevE.87.042123
    PRESKILL J. Quantum computing in the NISQ era and beyond. quantum: the open journal for quantum science[J]. Quantum, 2018, 2: 79. doi: 10.22331/q-2018-08-06-79
    PEREIRA E. Perfect thermal rectification in a many-body quantum Ising model[J]. Physical Review E, 2019, 99(3): 032116.
    MODI K, BRODUTCH A, CABLE H, et al. The classical-quantum boundary for correlations: discord and related measures[J]. Reviews of Modern Physics, 2012, 84: 1655-1707. doi: 10.1103/RevModPhys.84.1655
    BRUNNER N, CAVALCANTI D, PIRONIO S, et al. Bell nonlocality[J]. Reviews of Modern Physics, 2014, 86(2): 419-478. doi: 10.1103/RevModPhys.86.419
    CLEMENTE L, KOFLER J. No fine theorem for macrorealism: limitations of the Leggett-Garg inequality[J]. Physical Review Letters, 2016, 116(15): 150401. doi: 10.1103/PhysRevLett.116.150401
    BELL J S. On the Einstein Podolsky Rosen paradox[J]. Physics Physique Fizika, 1964, 1(3): 195-200. doi: 10.1103/PhysicsPhysiqueFizika.1.195
    CLAUSER J F, SHIMONY A. Bell's theorem. Experimental tests and implications[J]. Reports on Progress in Physics, 1978, 41(12): 1881-1927. doi: 10.1088/0034-4885/41/12/002
    HILL S A, WOOTTERS W K. Entanglement of a pair of quantum bits[J]. Physical Review Letters, 1997, 78(26): 5022-5025. doi: 10.1103/PhysRevLett.78.5022
    WOOTTERS W K. Entanglement of formation of an arbitrary state of two qubits[J]. Physical Review Letters, 1998, 80(10): 2245-2248. doi: 10.1103/PhysRevLett.80.2245
    OLLIVIER H, ZUREK W H. Quantum discord: a measure of the quantumness of correlations[J]. Physical Review Letters, 2001, 88(1): 017901. doi: 10.1103/PhysRevLett.88.017901
    HENDERSON L, VEDRAL V. Classical, quantum and total correlations[J]. Journal of Physics A:Mathematical and General, 2001, 34(35): 6899-6905. doi: 10.1088/0305-4470/34/35/315
    BAUMGRATZ T, CRAMER M, PLENIO M B. Quantifying coherence[J]. Physical Review Letters, 2014, 113(14): 140401. doi: 10.1103/PhysRevLett.113.140401
    SINGH U, BERA M N, DHAR H S, et al. Maximally coherent mixed states: complementarity between maximal coherence and mixedness[J]. Physical Review A, 2015, 91(5): 052115. doi: 10.1103/PhysRevA.91.052115
    ZHAO M J, MA T, QUAN Q, et al. ${l_1}$-norm coherence of assistance[J]. Physical Review A, 2019, 100(1): 012315. doi: 10.1103/PhysRevA.100.012315
    BEYER K, UOLA R, LUOMA K, et al. Joint measurability in nonequilibrium quantum thermodynamics[J]. Physical Review E, 2022, 106(2): L022101. doi: 10.1103/PhysRevE.106.L022101
    LUO SH L. Quantum discord for two-qubit systems[J]. Physical Review A, 2008, 77(4): 042303. doi: 10.1103/PhysRevA.77.042303
    LEGGETT A J, GARG A. Quantum mechanics versus macroscopic realism: is the flux there when nobody looks?[J]. Physical Review Letters, 1985, 54(9): 857-860. doi: 10.1103/PhysRevLett.54.857
    EMARY C, LAMBERT N, NORI F. Leggett–Garg inequalities[J]. Reports on Progress in Physics, 2014, 77(1): 016001. doi: 10.1088/0034-4885/77/1/016001
    HUELGA S F, MARSHALL T W, SANTOS E. Proposed test for realist theories using Rydberg atoms coupled to a high-Q resonator[J]. Physical Review A, 1995, 52(4): R2497-R2500. doi: 10.1103/PhysRevA.52.R2497
    GOGGIN M E, ALMEIDA M P, BARBIERI M, et al. Violation of the Leggett–Garg inequality with weak measurements of photons[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(4): 1256-1261. doi: 10.1073/pnas.1005774108
    GROEN J P, RISTÈ D, TORNBERG L, et al. Partial-measurement backaction and nonclassical weak values in a superconducting circuit[J]. Physical Review Letters, 2013, 111(9): 090506. doi: 10.1103/PhysRevLett.111.090506
    SANTINI A, VITALE V. Experimental violations of Leggett-Garg inequalities on a quantum computer[J]. Physical Review A, 2022, 105(3): 032610. doi: 10.1103/PhysRevA.105.032610
    BUDRONI C, EMARY C. Temporal quantum correlations and Leggett-Garg inequalities in multilevel systems[J]. Physical Review Letters, 2014, 113(5): 050401. doi: 10.1103/PhysRevLett.113.050401
    KATIYAR H, BRODUTCH A, LU D W, et al. Experimental violation of the Leggett–Garg inequality in a three-level system[J]. New Journal of Physics, 2017, 19: 023033. doi: 10.1088/1367-2630/aa5c51
    WANG K K, EMARY C, ZHAN X, et al. Enhanced violations of Leggett-Garg inequalities in an experimental three-level system[J]. Optics Express, 2017, 25(25): 31462-31470. doi: 10.1364/OE.25.031462
    VILLAS-BÔAS J M, GOVOROV A O, ULLOA S E. Coherent control of tunneling in a quantum dot molecule[J]. Physical Review B, 2004, 69(12): 125342. doi: 10.1103/PhysRevB.69.125342
    MÜLLER K, BECHTOLD A, RUPPERT C, et al. Electrical control of interdot electron tunneling in a double InGaAs quantum-dot nanostructure[J]. Physical Review Letters, 2012, 108(19): 197402. doi: 10.1103/PhysRevLett.108.197402
    BEIRNE G J, HERMANNSTÄDTER C, WANG L, et al. Quantum light emission of two lateral tunnel-coupled (In, Ga)As/GaAs quantum dots controlled by a tunable static electric field[J]. Physical Review Letters, 2006, 96(13): 137401. doi: 10.1103/PhysRevLett.96.137401
    BEIRNE G J, HERMANNSTÄDTER C, WANG L J, et al. Tunable lateral tunnel coupling between two self-assembled InGaAs quantum dots[J]. Proceedings of SPIE, 2007, 6471: 647104. doi: 10.1117/12.697165
    MAHDAVI M, SABEGH Z A, MOHAMMADI M, et al. Manipulation and exchange of light with orbital angular momentum in quantum-dot molecules[J]. Physical Review A, 2020, 101(6): 063811. doi: 10.1103/PhysRevA.101.063811
    LÜ X Y, WU J, ZHENG L L, et al. Voltage-controlled entanglement and quantum-information transfer between spatially separated quantum-dot molecules[J]. Physical Review A, 2011, 83(4): 042302. doi: 10.1103/PhysRevA.83.042302
    ZHENG A SH, CHENG Y J, LIU J B. Voltage-controlled multipartite entanglement with distant quantum dot molecules via adiabatic-varying tunnel coupling[J]. Journal of the Optical Society of America B, 2013, 30(12): 3168-3173. doi: 10.1364/JOSAB.30.003168
    HUA M, TAO M J, ALSAEDI A, et al. Universal distributed quantum computing on superconducting qutrits with dark photons[J]. Annalen der Physik, 2018, 530(4): 1700402. doi: 10.1002/andp.201700402
    SCHALL J, DECONINCK M, BART N, et al. Bright electrically controllable quantum-dot-molecule devices fabricated by in situ electron-beam lithography[J]. Advanced Quantum Technologies, 2021, 4(6): 2100002. doi: 10.1002/qute.202100002
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article views(340) PDF downloads(241) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint