Volume 16 Issue 5
Sep.  2023
Turn off MathJax
Article Contents
LIU Huan, JIANG Lun, ZHANG Xiao-fei, FU Yun, SONG Yan-song, TONG Shou-feng, LIU Xian-zhu. Development of a doppler asymmetric spatial heterodyne interferometer for ground-based wind field detection at the 557.7 nm wavelength[J]. Chinese Optics, 2023, 16(5): 1226-1242. doi: 10.37188/CO.EN-2022-0018
Citation: LIU Huan, JIANG Lun, ZHANG Xiao-fei, FU Yun, SONG Yan-song, TONG Shou-feng, LIU Xian-zhu. Development of a doppler asymmetric spatial heterodyne interferometer for ground-based wind field detection at the 557.7 nm wavelength[J]. Chinese Optics, 2023, 16(5): 1226-1242. doi: 10.37188/CO.EN-2022-0018

Development of a doppler asymmetric spatial heterodyne interferometer for ground-based wind field detection at the 557.7 nm wavelength

doi: 10.37188/CO.EN-2022-0018
Funds:  Supported by National Key Research and Development Plan Project (No. 2022YFB3902500)
More Information
  • Author Bio:

    Liu Huan (1997—), female, born in Jilin, Jilin Province master candidate, In June 2023, she received her master's degree in engineering from Changchun University of Science and Technology, She mainly engaged in Doppler asymmetric spatial heterodynetechnology, optical engineering research. E-mail: liu198804161997@163.com

    Jiang Lun (1984—), male, Changchun, Jilin Province, Doctoral, associate professor and doctoral supervisor, In 2012, he received his PhD from Changchun Institute of Optics, Fine Mechanicsand Physics, Chinese Academy of Sciences, mainly engaged in optical system design, space optics and space optical communication technology. E-mail: jlciomp@163.com

  • Corresponding author: jlciomp@163.com
  • Received Date: 13 Nov 2022
  • Rev Recd Date: 08 Dec 2022
  • Available Online: 15 Mar 2023
  • A ground-based Doppler Asymmetric Spatial Heterodyne (DASH) interferometer with a high Signal-to-Noise Ratio (SNR) and large etendue (AΩ) with thermal compensation was developed to detect wind field information in the middle atmosphere. The detailed parameters and index of the DASH interferometer were developed for the 557.7 nm oxygen airglow spectral line. The system was designed with an expanded Field Of View (FOV) and thermal compensation. The half-FOV angle reached 2.815°, the etendue was 0.09525 cm2sr, and the system’s SNR was approximately 113.75. Through the thermal compensation design, the final optical path difference with temperature variation (dΔd0/dT) was only 2.224×10−7mm/°C. The optical system was designed and optimized according to the corresponding parameters. Image-side telecentric and bilateral telecentric optical system structures were used in the entrance optics and exit optics, respectively, and parameters such as telecentricity and distortion met the detection requirements. To verify the design results, a ground-based DASH interferometer experimental platform was constructed, and indoor and outdoor ground-based experiments were conducted. In the final experiment, clear interference fringes were obtained, which proves that the system design results of the DASH interferometer are reasonable, and the system’s SNR and etendue meet the detection requirements.

     

  • loading
  • [1]
    WANG Y J, WANG Y M, WANG H M. Simulation of ground-based Fabry-Perot interferometer for the measurement of upper atmospheric winds[J]. Chinese Journal of Geophysics, 2014, 57(6): 1732-1739. (in Chinese) doi: 10.6038/cjg20140605
    [2]
    SHEPHERD G G, THUILLIER G, GAULT W A, et al. WINDII the wind imaging interferometer on theupper atmosphere research satellite[J]. Journal of Geophysical Research:Atmospheres, 1993, 98(D6): 10725-10750.
    [3]
    ENGLERT C R, HARLANDER J M, BABCOCK D D, et al.. Doppler asymmetric spatial heterodyne spectroscopy (DASH): an innovative concept for measuring winds in planetary atmospheres[C]. Proceedings of SPIE 6303, Atmospheric Optical Modeling, Measurement, and Simulation II, SPIE, 2006: 63030T.
    [4]
    ENGLERT C R, BABCOCK D D, HARLANDER J M. Doppler asymmetric spatial heterodyne spectroscopy (DASH): concept and experimental demonstration[J]. Applied Optics, 2007, 46(29): 7297-7307. doi: 10.1364/AO.46.007297
    [5]
    HARLANDER J M, ENGLERT C R, BABCOCK D D, et al. Design and laboratory tests of a Doppler Asymmetric Spatial Heterodyne (DASH) interferometer for upper atmospheric wind and temperature observations[J]. Optics Express, 2010, 18(25): 26430-26440. doi: 10.1364/OE.18.026430
    [6]
    BABCOCK D D, HARLANDER J M, ENGLERT C R, et al.. Doppler asymmetric spatial heterodyne (DASH) interferometer from flight concept to field campaign[C]. Proceedings of the Fourier Transform Spectroscopy 2011, Optica Publishing Group, 2011.
    [7]
    HARLANDER J M, ENGLERT C R, BROWN C M, et al.. Design and laboratory tests of the Michelson interferometer for global high-resolution thermospheric imaging (MIGHTI) on the ionospheric connection explorer (ICON) satellite[C]. Proceedings of the Fourier Transform Spectroscopy 2015, Optica Publishing Group, 2015.
    [8]
    ENGLERT C R, HARLANDER J M, BROWN C M, et al.. MIGHTI: the spatial heterodyne instrument for thermospheric wind measurements on board the ICON mission[C]. Proceedings of the Fourier Transform Spectroscopy 2015, Optica Publishing Group, 2015.
    [9]
    NING T. Doppler wind simulator for spatial heterodyne observations of wind[D]. York: York University, 2012.
    [10]
    SOLHEIM B, BROWN S, SIORIS C, et al. SWIFT-DASH: spatial heterodyne spectroscopy approach to stratospheric wind and ozone measurement[J]. Atmosphere—Ocean, 2015, 53(1): 50-57.
    [11]
    沈静. 中高层大气风场探测多普勒非对称空间外差技术研究[D]. 合肥: 中国科学技术大学, 2017.

    SHEN J. Doppler asymmetric spatial heterodyne technique for wind detection in the upper atmosphere[D]. Hefei: University of Science and Technology of China, 2017. (in Chinese)
    [12]
    况银丽. 基于非对称空间外差干涉仪的多普勒测速技术研究[D]. 成都: 中国科学院大学(中国科学院光电技术研究所), 2020.

    KUANG Y L. Research on radial velocity measurement technology based on Doppler asymmetric space heterodyne interferometer[D]. Chengdu: Institute of Optics and Electronics, Chinese Academy of Sciences, 2020. (in Chinese)
    [13]
    FEI X Y, FENG Y T, BAI Q L, et al. Optical system design of a Co-path Doppler asymmetric spatial heterodyne interferometer with two fields of view[J]. Acta Optica Sinica, 2015, 35(4): 0422003. (in Chinese) doi: 10.3788/AOS201535.0422003
    [14]
    陈洁婧. 多普勒差分干涉光谱仪风速反演技术研究[D]. 西安: 中国科学院大学(中国科学院西安光学精密机械研究所), 2017.

    CHEN J J. Study on Doppler asymmetric spatial heterodyne spectrometer in wind velocity retrieval[D]. Xi’an: Xi'an Institute of Optics & Precision Mechanics, Chinese Academy of Sciences, 2017. (in Chinese)
    [15]
    费小云. 星载测风双视场准共路多普勒外差干涉仪基础问题研究[D]. 西安: 中国科学院研究生院(西安光学精密机械研究所), 2015.

    FEI X Y. Basic study on a Co-path Doppler asymmetric spatial heterodyne spectroscopy interferometer with two fields of view for atmospheric wind vector observation form satellite platforms[D]. Xi’an: Xi'an Institute of Optics & Precision Mechanics, Chinese Academy of Sciences, 2015. (in Chinese)
    [16]
    GAO H, XU J Y, YUAN W. A Method of Inversing the Peak Density of Atomic Oxygen Vertical Distribution in the MLT Region From the OI (557.7nm) Night Airglow Intensity[J]. Space Science Journal, 2005, 25(5): 6. doi: 10.1080/02726340590910084.
    [17]
    KHOMICH V Y, SEMENOV A I, SHEFOV N N. Airglow as an Indicator of Upper Atmospheric Structure and Dynamics[M]. Berlin Heidelberg: Springer, 2008.
    [18]
    BELL R J. Introductory Fourier Transform Spectroscopy[M]. New York: Academic Press, 1972: 16-32.
    [19]
    FU Q, XIANG L B, JING J J. System signal-to-noise ratio analysis based on imaging chain model in multispectral remote sensing[J]. Acta Optica Sinica, 2012, 32(2): 0211001. (in Chinese) doi: 10.3788/AOS201232.0211001
    [20]
    SAPTARI V. Fourier-Transform Spectroscopy Instrumentation Engineering[M]. Bellingham: SPIE, 2003.
    [21]
    FENG Y T, BAI Q L, WANG Y M, et al. Theory and method for designing field-widened prism of spatial heterodyne spectrometer[J]. Acta Optica Sinica, 2012, 32(10): 1030001. (in Chinese) doi: 10.3788/AOS201232.1030001
    [22]
    汪丽. 干涉法大气风场探测技术研究[D]. 西安: 中国科学院研究生院(西安光学精密机械研究所), 2007.

    WANG L. Study on wind measurement of atmosphere by interferometry technology[D]. Xi’an: Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, 2007. (in Chinese)
    [23]
    MARR K D, ENGLERT C R, HARLANDER J M, et al. Thermal sensitivity of DASH interferometers: the role of thermal effects during the calibration of an Echelle DASH interferometer[J]. Applied Optics, 2013, 52(33): 8082-8088. doi: 10.1364/AO.52.008082
    [24]
    XUE Q SH, WANG SH R, LI F T, et al. Analysis and experimental validation of sgnal-to-noise for limb imaging sectrometer[J]. Spectroscopy and Spectral Analysis, 2010, 30(6): 1697-1701. (in Chinese)
    [25]
    CHEN ZH L, LIU Y ZH, FEI M M, et al. Design of industrial double telecentric optical lens with large field of view[J]. Journal of Xian Technological University, 2018, 38(5): 444-450. (in Chinese)
    [26]
    LI Y T, FU Y G, WANG L J, et al.. Design of full-spectrum imaging optical system for large-aperture space-based platform[J]. Chinese Optics, 2021, 14: 9. (in Chinese) doi: 10.37188/CO.2019-0255
    [27]
    WANG L Y, LI Y Q, CAI R. Noise suppression of laser jitter in space laser interferometer[J]. Chinese Optics (English and Chinese), 2021, 14(6): 1426-1434. (in Chinese) doi: 10.37188/CO.2021-0045
    [28]
    LI X Y, REN G X, LV M R, et al. Spectrometer with high spectral camera model in the laboratory research[J]. Journal of analytical chemistry, 2021. (in Chinese) doi: 10.19756/j.issn.0253-3820.191165
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(20)  / Tables(4)

    Article views(258) PDF downloads(212) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return