Volume 16 Issue 5
Sep.  2023
Turn off MathJax
Article Contents
YANG Tian-yue, GONG Ting, GUO Gu-qing, SUN Xiao-cong, TIAN Ya-li, QIU Xuan-bing, HE Qiu-sheng, GAO Xiao-ming, LI Chuan-liang. Design and achievement of a device for high-precision ammonia gas detection based on laser spectroscopy[J]. Chinese Optics, 2023, 16(5): 1129-1136. doi: 10.37188/CO.2023-0023
Citation: YANG Tian-yue, GONG Ting, GUO Gu-qing, SUN Xiao-cong, TIAN Ya-li, QIU Xuan-bing, HE Qiu-sheng, GAO Xiao-ming, LI Chuan-liang. Design and achievement of a device for high-precision ammonia gas detection based on laser spectroscopy[J]. Chinese Optics, 2023, 16(5): 1129-1136. doi: 10.37188/CO.2023-0023

Design and achievement of a device for high-precision ammonia gas detection based on laser spectroscopy

doi: 10.37188/CO.2023-0023
Funds:  Supported by National Natural Science Foundation of China (No. U1810129, No. 52076145, No. 12304403); Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province (No. 20230031); Shanxi Scholarship Council of China (No.2023-151); Fundamental Research Program of Shanxi Province (No. 202203021222204); Taiyuan University of Science and Technology Scientific Research Initial Funding (No. 20222008, No. 20222132); Transformation of Scientific and Technological Achievements Fund of Shanxi Province (No. 201904D131025)
More Information
  • Corresponding author: clli@tyust.edu.cn
  • Received Date: 04 Feb 2023
  • Rev Recd Date: 24 Feb 2023
  • Accepted Date: 13 Apr 2023
  • Available Online: 13 Apr 2023
  • Ammonia emission will cause harm to the environment and human health, so it is particularly important that the ammonia concentrations are measured with high precision. Off-Axis Integrating Cavity Output Spectroscopy (OA-ICOS), which has the advantages of high sensitivity and high response speed, is used to design a high-precision ammonia detection device. The gas absorption cell is composed of two high reflection mirrors with a reflectivity of 99.99%, and the base length of the optical resonator is 30 cm. Finally, an optical path of nearly 3000 m was realized. The Distributed Feedback Laser (DFB) with a central wavelength of 1528 nm is tuned to 6548.611 cm−1 and 6548.798 cm−1. The concentration of NH3 is changed from 1×10 −5 to 5×10−5 and is detected under an atmospheric pressure of 18.6 kPa at room temperature. The measurement results show that the linear fit R2 between NH3 concentration and signal amplitude can reach 0.99979. The Allan variance is used to analyze the experimental data, and the minimum detection limit of the system can reach 7×10−9 at 103 s. The experimental results show that the detection device has good stability and high sensitivity, meets the demand for the high-precision detection of ammonia gas, and also provides technical experience for the domestic independent research and development of high-precision detection equipment for trace gases.


  • loading
  • [1]
    赵琳, 刘庆岭, 周伟, 等. 工业烟气脱硝技术国内外研究进展[J]. 化学试剂,2021,43(6):747-756.

    ZHAO L, LIU Q L, ZHOU W, et al. Research progress of industrial flue gas denitrification technology[J]. Chemical Reagents, 2021, 43(6): 747-756. (in Chinese)
    LI SH W, CHANG M H, LI H M, et al. Chemical compositions and source apportionment of PM2.5 during clear and hazy days: seasonal changes and impacts of Youth Olympic Games[J]. Chemosphere, 2020, 256: 127163. doi: 10.1016/j.chemosphere.2020.127163
    李星国. 氢能的发展机遇与面临的挑战[J]. 应用化学,2022,39(7):1157-1166.

    LI X G. Development opportunities and challenges of hydrogen energy[J]. Chinese Journal of Applied Chemistry, 2022, 39(7): 1157-1166. (in Chinese)
    程军杰, 曹智, 杨灿然, 等. 便携式远程激光诱导击穿光谱系统及其定量分析性能[J]. 应用化学,2022,39(9):1447-1452.

    CHENG J J, CAO ZH, YANG C R, et al. Quantitative analysis with a portable remote laser-induced breakdown spectroscopy system[J]. Chinese Journal of Applied Chemistry, 2022, 39(9): 1447-1452. (in Chinese)
    唐连波, 付大友, 陈琦, 等. 碳量子点增强气液相化学发光检测二氧化碳[J]. 应用化学,2022,39(8):1294-1302.

    TANG L B, FU D Y, CHEN Q, et al. Enhanced gas-liquid chemiluminescence by carbon dots for determination of carbon dioxide[J]. Chinese Journal of Applied Chemistry, 2022, 39(8): 1294-1302. (in Chinese)
    王磊, 宦克为, 刘小溪, 等. 基于卷积神经网络的近红外光谱全流程分析模型研究[J]. 分析化学,2022,50(12):1918-1926.

    WANG L, HUAN K W, LIU X X, et al. Full-range analysis model of near infrared spectroscopy based on convolutional neural network[J]. Chinese Journal of Analytical Chemistry, 2022, 50(12): 1918-1926. (in Chinese)
    李岩, 祁昱, 李赫. 拉曼光谱在感染性疾病诊断中的应用进展[J]. 分析化学,2022,50(3):317-326.

    LI Y, QI Y, LI H. Advances of Raman spectroscopy in diagnosis of infectious diseases[J]. Chinese Journal of Analytical Chemistry, 2022, 50(3): 317-326. (in Chinese)
    黄慧, 周亦辰, 彭宇, 等. 基于量子级联激光器中红外光谱技术的幽门螺旋杆菌呼气诊断的可行性研究[J]. 分析化学,2022,50(9):1328-1335.

    HUANG H, ZHOU Y CH, PENG Y, et al. Feasibility study of breath diagnosis in Helicobacter pylori based on quantum cascade laser mid-infrared spectroscopy[J]. Chinese Journal of Analytical Chemistry, 2022, 50(9): 1328-1335. (in Chinese)
    POGÁNY A, WAGNER S, WERHAHN O, et al. Development and metrological characterization of a Tunable Diode Laser Absorption Spectroscopy (TDLAS) spectrometer for simultaneous absolute measurement of carbon dioxide and water vapor[J]. Applied Spectroscopy, 2015, 69(2): 257-268. doi: 10.1366/14-07575
    DONG L, TITTEL F K, LI CH G, et al. Compact TDLAS based sensor design using interband cascade lasers for mid-IR trace gas sensing[J]. Optics Express, 2016, 24(6): A528-A535. doi: 10.1364/OE.24.00A528
    朱宝余, 孙成勋, 王兰, 等. 氨气检测仪研究现状[J]. 化工进展,2017,36(S1):27-33.

    ZHU B Y, SUN CH X, WANG L, et al. Research status of ammonia gas detector[J]. Chemical Industry and Engineering Progress, 2017, 36(S1): 27-33. (in Chinese)
    FENG SH L, QIU X B, GUO G Q, et al. Palm-sized laser spectrometer with high robustness and sensitivity for trace gas detection using a novel double-layer toroidal cell[J]. Analytical Chemistry, 2021, 93(10): 4552-4558. doi: 10.1021/acs.analchem.0c04995
    SHAO L G, CHEN J J, WANG K Y, et al. Highly precise measurement of atmospheric N2O and CO using improved White cell and RF current perturbation[J]. Sensors and Actuators B:Chemical, 2022, 352: 130995. doi: 10.1016/j.snb.2021.130995
    ZHANG L W, PANG T, ZHANG Z R, et al. A novel compact intrinsic safety full range Methane microprobe sensor using "trans-world" processing method based on near-infrared spectroscopy[J]. Sensors and Actuators B:Chemical, 2021, 334: 129680. doi: 10.1016/j.snb.2021.129680
    GUO Y CH, QIU X B, LI N, et al. A portable laser-based sensor for detecting H2S in domestic natural gas[J]. Infrared Physics &Technology, 2020, 105: 103153.
    TIAN J F, ZHAO G, FLEISHER A J, et al. Optical feedback linear cavity enhanced absorption spectroscopy[J]. Optics Express, 2021, 29(17): 26831-26840. doi: 10.1364/OE.431934
    CLAPS R, ENGLICH F V, LELEUX D P, et al. Ammonia detection by use of near-infrared diode-laser-based overtone spectroscopy[J]. Applied Optics, 2001, 40(24): 4387-4394. doi: 10.1364/AO.40.004387
    MILLER D J, SUN K, TAO L, et al. Open-path, quantum cascade-laser-based sensor for high-resolution atmospheric ammonia measurements[J]. Atmospheric Measurement Techniques, 2014, 7(1): 81-93. doi: 10.5194/amt-7-81-2014
    GUO X Q, ZHENG F, LI CH L, et al. A portable sensor for in-situ measurement of ammonia based on near-infrared laser absorption spectroscopy[J]. Optics and Lasers in Engineering, 2019, 115: 243-248. doi: 10.1016/j.optlaseng.2018.12.005
    TELFAH H, PAUL A C, LIU J J. Aligning an optical cavity: with reference to cavity ring-down spectroscopy[J]. Applied Optics, 2020, 59(30): 9464-9468. doi: 10.1364/AO.405189
    BAER D S, PAUL J B, GUPTA M, et al. Sensitive absorption measurements in the near-infrared region using off-axis integrated-cavity-output spectroscopy[J]. Applied Physics B, 2002, 75(2-3): 261-265. doi: 10.1007/s00340-002-0971-z
    贾慧, 郭晓勇, 蔡廷栋, 等. 1.531μm附近NH3分子痕量探测[J]. 光谱学与光谱分析,2009,29(12):3173-3176. doi: 10.3964/j.issn.1000-0593(2009)12-3173-04

    JIA H, GUO X Y, CAI T D, et al. Trace detection of ammonia at 1.531 μm[J]. Spectroscopy and Spectral Analysis, 2009, 29(12): 3173-3176. (in Chinese) doi: 10.3964/j.issn.1000-0593(2009)12-3173-04
    王坤阳. 基于离轴积分腔光谱大气CO2和CH4高精度测量技术研究[D]. 合肥: 中国科学技术大学, 2021.

    WANG K Y. In-site measurement of CO2 and CH4 in atmosphere using off-axis integrated cavity spectroscopy[D]. Hefei: University of Science and Technology of China, 2021. (in Chinese)
    FIEDLER S E, HESE A, RUTH A A. Incoherent broad-band cavity-enhanced absorption spectroscopy[J]. Chemical Physics Letters, 2003, 371(3-4): 284-294. doi: 10.1016/S0009-2614(03)00263-X
    袁子豪, 黄印博, 钟磬, 等. V形结构离轴积分腔吸收光谱测量装置设计与研究[J]. 中国激光,2023,50(18):1811001.

    YUAN Z H, HUANG Y B, ZHONG Q, et al. Design and study of V-shaped structure off-axis integrated cavity absorption spectroscopy[J]. Chinese Journal of Lasers, 2023, 50(18): 1811001. (in Chinese)
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article views(361) PDF downloads(194) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint