Volume 16 Issue 5
Sep.  2023
Turn off MathJax
Article Contents
CHEN Yi, SUN Jun-jie, YU Jing-hua, YAO Zhi-huan, ZHANG Yi-wen, YU De-yang, HE Yang, ZHANG Kuo, PAN Qi-kun, CHEN Fei. Review of the cavity-design of high-energy thin-disk laser multi-pass amplifiers[J]. Chinese Optics, 2023, 16(5): 996-1009. doi: 10.37188/CO.2023-0009
Citation: CHEN Yi, SUN Jun-jie, YU Jing-hua, YAO Zhi-huan, ZHANG Yi-wen, YU De-yang, HE Yang, ZHANG Kuo, PAN Qi-kun, CHEN Fei. Review of the cavity-design of high-energy thin-disk laser multi-pass amplifiers[J]. Chinese Optics, 2023, 16(5): 996-1009. doi: 10.37188/CO.2023-0009

Review of the cavity-design of high-energy thin-disk laser multi-pass amplifiers

doi: 10.37188/CO.2023-0009
Funds:  Supported by Innovate Major Project, CIOMP (No. E10302Y3M0); Jilin Province Youth Growth Science and Technology Project (No. 20220508041RC)
More Information
  • In order to clarify the cavity design methods of thin-disk multi-pass amplifiers, we summarize the different types of thin-disk multi-pass amplifiers and concludes that there are four fundamental design concepts: (1) 4f relay imaging, (2) resonant cavity design/optical Fourier transform, (3) near-collimated beam transmission, and (4) others. Each amplifier design method is described and the current status of its research is listed in as much detail as possible. By comparing the four types of disk multi-pass amplifiers, it is found that the varying methods have distinct advantages and disadvantages. 4f relay imaging requires a vacuum environment to avoid gas ionization at the focal point, making the mechanics and adjustment more difficult; the resonant cavity design/optical Fourier transform concept multi-pass amplifier has a small spot at the mirrors, making it more suitable for lower energy multi-pass amplifiers; the near collimated beam transmission method has great development potential because it does not require a vacuum environment, but accurately controlling the surface shape of the thin-disk is difficult while the laser is operating. Therefore, from the perspective of laser design, it is necessary to continue to optimize the design of the thin-disk multi-pass amplifier to realize the diversification of application scenarios and the sustainable expansion of output energy.

     

  • loading
  • [1]
    张世达, 耿乙迦. 碲化铋倏逝场锁模器件的超快光纤激光器[J]. 中国光学,2022,15(3):433-442. doi: 10.37188/CO.2021-0216

    ZHANG SH D, GENG Y J. Ultrafast fiber laser based on bismuth telluride evanescent field mode-locked device[J]. Chinese Optics, 2022, 15(3): 433-442. (in Chinese) doi: 10.37188/CO.2021-0216
    [2]
    徐飞, 潘其坤, 陈飞, 等. 中红外Fe2+: ZnSe激光器研究进展[J]. 中国光学,2021,14(3):458-469. doi: 10.37188/CO.2020-0180

    XU F, PAN Q K, CHEN F, et al. Development progress of Fe2+: ZnSe lasers[J]. Chinese Optics, 2021, 14(3): 458-469. (in Chinese) doi: 10.37188/CO.2020-0180
    [3]
    牛娜, 窦微, 浦双双, 等. 蓝光二极管抽运Pr: YLF腔内倍频连续深紫外激光器[J]. 中国光学,2021,14(6):1395-1399. doi: 10.37188/CO.2021-0077

    NIU N, DOU W, PU SH SH, et al. Continuous deep ultraviolet laser by intracavity frequency doubling of blue laser diode pumped Pr: YLF[J]. Chinese Optics, 2021, 14(6): 1395-1399. (in Chinese) doi: 10.37188/CO.2021-0077
    [4]
    NUBBEMEYER T, KAUMANNS M, UEFFING M, et al. 1kW, 200 mJ picosecond thin-disk laser system[J]. Optics Letters, 2017, 42(7): 1381-1384. doi: 10.1364/OL.42.001381
    [5]
    KRÖTZ P, WANDT C, GREBING C, et al. . Towards 2 kW, 20 kHz ultrafast thin-disk based regenerative amplifiers[C]. Advanced Solid State Lasers 2019, Optica Publishing Group, 2019: ATh1A. 8.
    [6]
    MÜLLER D, ERHARD S, RONSIN O, et al. . Thin disk multi-pass amplifier[C]. Advanced Solid-State Photonics 2003, Optica Publishing Group, 2003: 278.
    [7]
    LOESER M, SIEBOLD M, ROESER F, et al. . High energy CPA-free picosecond Yb: YAG amplifier[C]. Advanced Solid-State Photonics 2012, Optica Publishing Group, 2012: AM4A. 16.
    [8]
    FRIEBEL F, PELLEGRINA A, PAPADOPOULOS D N, et al. . 57-mJ 20-Hz multipass laser amplifier based on Yb: CaF2 crystals[C]. Advanced Solid State Lasers 2013, Optica Publishing Group, 2013: ATu3A. 21.
    [9]
    ZAPATA L E, LIN H, CALENDRON A L, et al. Cryogenic Yb: YAG composite-thin-disk for high energy and average power amplifiers[J]. Optics Letters, 2015, 40(11): 2610-2613. doi: 10.1364/OL.40.002610
    [10]
    SIEBOLD M, LOESER M, ROESER F, et al. High-energy, ceramic-disk Yb: LuAG laser amplifier[J]. Optics Express, 2012, 20(20): 21992-22000. doi: 10.1364/OE.20.021992
    [11]
    FRIEBEL F, PELLEGRINA A, PAPADOPOULOS D N, et al. Diode-pumped Yb: CaF2 multipass amplifier producing 50 mJ with dynamic analysis for high repetition rate operation[J]. Applied Physics B, 2014, 117(2): 597-603. doi: 10.1007/s00340-014-5872-4
    [12]
    ZWILICH M, EWERS B. Coherent beam combining of multipass thin-disk lasers with active phase control[J]. OSA Continuum, 2020, 3(11): 3176-3186. doi: 10.1364/OSAC.404658
    [13]
    PEREVEZENTSEV E, KUZNETSOV I, MUKHIN I, et al. Matrix multi-pass scheme disk amplifier[J]. Applied Optics, 2017, 56(30): 8471-8476. doi: 10.1364/AO.56.008471
    [14]
    SPEISER J. Thin disk lasers: history and prospects[J]. Proceedings of SPIE, 2016, 9893: 98930L.
    [15]
    OCHI Y, NAGASHIMA K, MARUYAMA M, et al. . Effective multi-pass amplification system for Yb: YAG thin-disk laser[C]. Laser Applications Conference 2017, Optica Publishing Group, 2017: JTh2A. 31.
    [16]
    KÖRNER J, HEIN J, KALUZA M C. Compact aberration-free relay-imaging multi-pass layouts for high-energy laser amplifiers[J]. Applied Sciences, 2016, 6(11): 353. doi: 10.3390/app6110353
    [17]
    SMRŽ M, MUŽÍK J, NOVÁK O, et al. Progress in kW-class picosecond thin-disk lasers development at the HiLASE[J]. Proceedings of SPIE, 2016, 9726: 972617.
    [18]
    FAN T Y, RIPIN D J, AGGARWAL R L, et al. Cryogenic Yb3+-doped solid-state lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(3): 448-459. doi: 10.1109/JSTQE.2007.896602
    [19]
    KOERNER J, VORHOLT C, LIEBETRAU H, et al. Measurement of temperature-dependent absorption and emission spectra of Yb: YAG, Yb: LuAG, and Yb: CaF2 between 20 °C and 200 °C and predictions on their influence on laser performance[J]. Journal of the Optical Society of America B, 2012, 29(9): 2493-2502. doi: 10.1364/JOSAB.29.002493
    [20]
    CALENDRON A L, ZAPATA L E, ÇANKAYA H, et al. . Optimized temperature/bandwidth operation of cryogenic Yb: YAG composite thin-disk laser amplifier[C]. High Intensity Lasers and High Field Phenomena 2014, Optica Publishing Group, 2014: JW2A. 10.
    [21]
    ANTOGNINI A, SCHUHMANN K, AMARO F D, et al. Thin-disk Yb: YAG oscillator-amplifier laser, ASE, and effective Yb: YAG lifetime[J]. IEEE Journal of Quantum Electronics, 2009, 45(8): 993-1005. doi: 10.1109/JQE.2009.2014881
    [22]
    SCHUHMANN K, ANTOGNINI A, KIRCH K, et al. . Thin-disk laser for the measurement of the radii of the proton and the alpha-particle[C]. Advanced Solid State Lasers 2013, Optica Publishing Group, 2013: ATu3A. 46.
    [23]
    TÜMMLER J, JUNG R, STIEL H, et al. High-repetition-rate chirped-pulse-amplification thin-disk laser system with joule-level pulse energy[J]. Optics Letters, 2009, 34(9): 1378-1380. doi: 10.1364/OL.34.001378
    [24]
    SCHUHMANN K, KIRCH K, MARSZALEK M, et al. Multipass amplifiers with self-compensation of the thermal lens[J]. Applied Optics, 2018, 57(35): 10323-10333. doi: 10.1364/AO.57.010323
    [25]
    ZEYEN M, ANTOGNINI A, KIRCH K, et al. Compact 20-pass thin-disk amplifier insensitive to thermal lensing[J]. Proceedings of SPIE, 2019, 10896: 108960X.
    [26]
    SCHUHMANN K, KIRCH K, KNECHT A, et al. Passive alignment stability and auto-alignment of multipass amplifiers based on Fourier transforms[J]. Applied Optics, 2019, 58(11): 2904-2912. doi: 10.1364/AO.58.002904
    [27]
    NEGEL J P, VOSS A, AHMED M A, et al. 1.1 kW average output power from a thin-disk multipass amplifier for ultrashort laser pulses[J]. Optics Letters, 2013, 38(24): 5442-5445. doi: 10.1364/OL.38.005442
    [28]
    SCHUHMANN K, AHMED M A, ANTOGNINI A, et al. Thin-disk laser multi-pass amplifier[J]. Proceedings of SPIE, 2015, 9342: 93420U.
    [29]
    SCHUHMANN K, KIRCH K, NEZ F, et al. Thin-disk laser scaling limit due to thermal lens induced misalignment instability[J]. Applied Optics, 2016, 55(32): 9022-9032. doi: 10.1364/AO.55.009022
    [30]
    SCHUHMANN K, KIRCH K, ANTOGNINI A. Multi-pass resonator design for energy scaling of mode-locked thin-disk lasers[J]. Proceedings of SPIE, 2017, 10082: 100820J.
    [31]
    SCHUHMANN K. The thin-disk laser for the 2S – 2P measurement in muonic helium[D]. Zurich: ETH Zurich, 2017.
    [32]
    NEGEL J P, VOSS A, AHMED M A, et al. . Thin-disk multipass amplifier for ultrashort pulses with an output power of 264 W[C]. Advanced Solid State Lasers 2013, Optica Publishing Group, 2013: AF3A. 9.
    [33]
    NEGEL J P, VOSS A, AHMED M A, et al. . 1.3 kW average output power Yb: YAG thin-disk multipass amplifier for multi-mJ picosecond laser pulses[C]. CLEO: Science and Innovations 2014, Optica Publishing Group, 2014: STu1O. 2.
    [34]
    NEGEL J P, LOESCHER A, VOSS A, et al. Ultrafast thin-disk multipass laser amplifier delivering 1.4 kW (4.7 mJ, 1030 nm) average power converted to 820 W at 515 nm and 234 W at 343 nm[J]. Optics Express, 2015, 23(16): 21064-21077. doi: 10.1364/OE.23.021064
    [35]
    LOESCHER A, NEGEL J P, GRAF T, et al. Radially polarized emission with 635 W of average power and 2.1 mJ of pulse energy generated by an ultrafast thin-disk multipass amplifier[J]. Optics Letters, 2015, 40(24): 5758-5761. doi: 10.1364/OL.40.005758
    [36]
    NEGEL J P, LOESCHER A, BAUER D, et al. . Second generation thin-disk multipass amplifier delivering picosecond pulses with 2 kW of average output power[C]. Advanced Solid State Lasers 2016, Optica Publishing Group, 2016: ATu4A. 5.
    [37]
    NEGEL J P, LOESCHER A, DANNECKER B, et al. Thin-disk multipass amplifier for fs pulses delivering 400 W of average and 2.0 GW of peak power for linear polarization as well as 235 W and 1.2 GW for radial polarization[J]. Applied Physics B, 2017, 123(5): 156. doi: 10.1007/s00340-017-6739-2
    [38]
    RÖCKER C, LOESCHER A, BIENERT F, et al. Ultrafast green thin-disk laser exceeding 1.4  kW of average power[J]. Optics Letters, 2020, 45(19): 5522-5525. doi: 10.1364/OL.403781
    [39]
    RÖCKER C, LOESCHER A, NEGEL J P, et al. Direct amplification of sub-300fs pulses in a versatile thin-disk multipass amplifier[J]. Optics Communications, 2020, 460: 125159. doi: 10.1016/j.optcom.2019.125159
    [40]
    DIETZ T, JENNE M, BAUER D, et al. Ultrafast thin-disk multi-pass amplifier system providing 1.9 kW of average output power and pulse energies in the 10 mJ range at 1 ps of pulse duration for glass-cleaving applications[J]. Optics Express, 2020, 28(8): 11415-11423. doi: 10.1364/OE.383926
    [41]
    HERKOMMER C, KRÖTZ P, JUNG R, et al. Ultrafast thin-disk multipass amplifier with 720 mJ operating at kilohertz repetition rate for applications in atmospheric research[J]. Optics Express, 2020, 28(20): 30164-30173. doi: 10.1364/OE.404185
    [42]
    KEPPLER S, WANDT C, HORNUNG M, et al. Multipass amplifiers of POLARIS[J]. Proceedings of SPIE, 2013, 8780: 87800I. doi: 10.1117/12.2019248
    [43]
    JUNG R, TÜMMLER J, NUBBEMEYER T, et al. . Two-channel thin-disk laser for high pulse energy[C]. Advanced Solid State Lasers 2015, Optica Publishing Group, 2015: AW3A. 7.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(28)  / Tables(2)

    Article views(585) PDF downloads(309) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return