Volume 16 Issue 5
Sep.  2023
Turn off MathJax
Article Contents
SONG Ying, ZHANG Hao-ran, LI Jian-zhi, SHEN Bo-hao, LIU Zhan-jian. Fiber bragg grating accelerometer based on flexure hinge and bearing[J]. Chinese Optics, 2023, 16(5): 1109-1120. doi: 10.37188/CO.2022-0252
Citation: SONG Ying, ZHANG Hao-ran, LI Jian-zhi, SHEN Bo-hao, LIU Zhan-jian. Fiber bragg grating accelerometer based on flexure hinge and bearing[J]. Chinese Optics, 2023, 16(5): 1109-1120. doi: 10.37188/CO.2022-0252

Fiber bragg grating accelerometer based on flexure hinge and bearing

doi: 10.37188/CO.2022-0252
Funds:  Supported by National Key Research and Development Program (No. 2021YFB2601000); Central Leading Local Science and Technology Development Fund (No. 226Z0801G, No. 216Z3901G)
More Information
  • Corresponding author: lijianzhigang@163.com
  • Received Date: 07 Dec 2022
  • Rev Recd Date: 23 Dec 2022
  • Available Online: 25 Apr 2023
  • We develop a fiber Bragg grating accelerometer based on a bearing and flexure hinge for the measurement of medium-high frequency vibration signals. The mathematical model between its natural frequency and sensitivity and structural parameters is derived based on a mechanical model, and the structural design is optimized based on the theoretical analysis results. With these prerequisites, the sensor was fabricated. Ultimately, its dynamic characteristics are validated using a finite element simulation and vibration experiment. The results show that both its operating frequency range and acceleration sensitivity are 10−1200 Hz and 17.25 pm/g. In addition, this proposed sensor has some advantages such as an error of less than 0.3 g, a good linearity of greater than 0.99, a repeatability error of 2.33%, and it is free of temperature.


  • loading
  • [1]
    顾宏灿, 黄俊斌, 程玲, 等. 20~1250 Hz光纤激光加速度传感系统设计[J]. 中国光学(中英文),2017,10(4):469-476. doi: 10.3788/co.20171004.0469

    GU H C, HUANG J B, CHENG L, et al. 20-1250 Hz fiber laser acceleration sensing system[J]. Chinese Optics, 2017, 10(4): 469-476. (in Chinese) doi: 10.3788/co.20171004.0469
    LI J H, MA H, YANG CH Y, et al. Research progress of the laser vibration measurement techniques for acoustic-to-seismic coupling landmine detection[J]. Chinese Optics, 2021, 14(3): 487-502. doi: 10.37188/CO.2020-0134
    BAASCH B, HEUSEL J, ROTH M, et al. Train wheel condition monitoring via cepstral analysis of axle box accelerations[J]. Applied Sciences, 2021, 11(4): 1432. doi: 10.3390/app11041432
    GOTO H, KANEKO Y, YOUNG J, et al. Extreme accelerations during earthquakes caused by elastic flapping effect[J]. Scientific Reports, 2019, 9(1): 1117. doi: 10.1038/s41598-018-37716-y
    朱峰, 唐毓涛, 高晨轩. 弓网离线电弧对CRH380BL型动车组速度传感器的电磁干扰机理及抑制[J]. 中国铁道科学,2016,37(6):69-74. doi: 10.3969/j.issn.1001-4632.2016.06.09

    ZHU F, TANG Y T, GAO CH X. Mechanism and suppression of electromagnetic interference of pantograph-catenary arc to speed sensor of CRH380BL electric multiple unit[J]. China Railway Science, 2016, 37(6): 69-74. (in Chinese) doi: 10.3969/j.issn.1001-4632.2016.06.09
    吴虎, 孔勇, 王振伟, 等. 基于端点检测与信号重组的光纤分布式传感信号识别[J]. 光子学报,2021,50(11):1106005. doi: 10.3788/gzxb20215011.1106005

    WU H, KONG Y, WANG ZH W, et al. Fiber distributed sensing signal recognition based on endpoint detection and signal recombination[J]. Acta Photonica Sinica, 2021, 50(11): 1106005. (in Chinese) doi: 10.3788/gzxb20215011.1106005
    JIANG SH D, WANG Y Y, ZHANG F X, et al. A high-sensitivity FBG accelerometer and application for flow monitoring in oil wells[J]. Optical Fiber Technology, 2022, 74: 103128. doi: 10.1016/j.yofte.2022.103128
    QIU ZH CH, SUN R, TENG Y T, et al. Design and test of a low frequency fiber Bragg grating acceleration sensor with double tilted cantilevers[J]. Optics Communications, 2022, 507: 127663. doi: 10.1016/j.optcom.2021.127663
    魏莉, 刘壮, 李恒春, 等. 基于“士”字形梁增敏结构的光纤光栅振动传感器[J]. 光学学报,2019,39(11):1106004.

    WEI L, LIU ZH, LI H CH, et al. Fiber Bragg grating vibration sensor based on sensitive structure for "Shi"-shaped beam[J]. Acta Optica Sinica, 2019, 39(11): 1106004. (in Chinese)
    ZHAO X F, JIA ZH A, FAN W, et al. A fiber Bragg grating acceleration sensor with temperature compensation[J]. Optik, 2021, 241: 166993. doi: 10.1016/j.ijleo.2021.166993
    LI T L, TAN Y G, HAN X, et al. Diaphragm based fiber Bragg grating acceleration sensor with temperature compensation[J]. Sensors, 2017, 17(1): 218.
    魏莉, 余玲玲, 姜达州, 等. 基于膜片与菱形结构的光纤布拉格光栅加速度传感器[J]. 中国激光,2019,46(9):0910003. doi: 10.3788/CJL201946.0910003

    WEI L, YU L L, JIANG D ZH, et al. Fiber Bragg grating accelerometer based on diaphragm and diamond structure[J]. Chinese Journal of Lasers, 2019, 46(9): 0910003. (in Chinese) doi: 10.3788/CJL201946.0910003
    FAN W, WEN J, GAO H, et al. Low-frequency fiber Bragg grating accelerometer based on diaphragm-type cantilever[J]. Optical Fiber Technology, 2022, 70: 102888. doi: 10.1016/j.yofte.2022.102888
    WU H, LIN Q J, ZHAO N, et al. A high-frequency acceleration sensor based on fiber grating[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 7003808.
    WANG X F, GUO Y X, XIONG L, et al. High-frequency optical fiber Bragg grating accelerometer[J]. IEEE Sensors Journal, 2018, 18(12): 4954-4960. doi: 10.1109/JSEN.2018.2833885
    LI Y ZH, MA Q Q, CHEN F Y, et al. A flexible hinge accelerometer based on dual short fiber Bragg grating[J]. Sensors and Actuators A:Physical, 2022, 344: 113695. doi: 10.1016/j.sna.2022.113695
    LIANG L, WANG H, LI Z CH, et al. Miniature bending-resistant fiber grating accelerometer based on a flexible hinge structure[J]. Optics Express, 2022, 30(19): 33502-33514. doi: 10.1364/OE.465453
    YAN B, LIANG L. A novel fiber Bragg grating accelerometer based on parallel double flexible hinges[J]. IEEE Sensors Journal, 2020, 20(9): 4713-4718. doi: 10.1109/JSEN.2019.2925017
    LUO X D, LI Y F, FENG D Q, et al. Fiber Bragg grating accelerometer based on symmetrical double flexure hinges[J]. Optical Fiber Technology, 2022, 68: 102795. doi: 10.1016/j.yofte.2021.102795
    QIU ZH CH, ZHANG J Q, TENG Y T, et al. Hinge-type FBG acceleration sensor based on double elastic plate[J]. Scientific Reports, 2021, 11(1): 24319. doi: 10.1038/s41598-021-03628-7
    LI Z CH, LIANG L, WANG H, et al. A medium-frequency fiber Bragg grating accelerometer based on flexible hinges[J]. Sensors, 2021, 21(21): 6968. doi: 10.3390/s21216968
    FRIEDRICH R, LAMMERING R, HEURICH T. Nonlinear modeling of compliant mechanisms incorporating circular flexure hinges with finite beam elements[J]. Precision Engineering, 2015, 42: 73-79. doi: 10.1016/j.precisioneng.2015.04.001
    吴鹰飞, 周兆英. 柔性铰链转动刚度计算公式的推导[J]. 仪器仪表学报,2004,25(1):125-128,137. doi: 10.3321/j.issn:0254-3087.2004.01.032

    WU Y F, ZHOU ZH Y. Deduction of design equation of flexure hinge[J]. Chinese Journal of Scientific Instrument, 2004, 25(1): 125-128,137. (in Chinese) doi: 10.3321/j.issn:0254-3087.2004.01.032
    周晓林, 崔长彩, 范伟, 等. 柔性铰链的3种模型计算和分析[J]. 机械设计,2011,28(5):5-9. doi: 10.13841/j.cnki.jxsj.2011.05.014

    ZHOU X L, CUI CH C, FAN W, et al. Computation and analysis of the three models of flexure hinge[J]. Journal of Machine Design, 2011, 28(5): 5-9. (in Chinese) doi: 10.13841/j.cnki.jxsj.2011.05.014
    谢官模. 振动力学[M]. 北京: 国防工业出版社, 2007.

    XIE G M. Vibration Mechanical[M]. Beijing: National Defense Industry Press, 2007. (in Chinese)
    何道清, 张禾, 石明江. 传感器与传感器技术[M]. 4版. 北京: 科学出版社, 2020.

    HE D Q, ZHANG H, SHI M J. Sensors and Sensor Technology[M]. 4th ed. Beijing: Science Press, 2020. (in Chinese)
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(3)

    Article views(361) PDF downloads(184) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint