Volume 16 Issue 5
Sep.  2023
Turn off MathJax
Article Contents
ZHOU Jun-zhuo, HAO Jia, YU Xiao-chang, ZHOU Jian, DENG Chen-wei, YU Yi-ting. Recent advances in metasurfaces for polarization imaging[J]. Chinese Optics, 2023, 16(5): 973-995. doi: 10.37188/CO.2022-0234
Citation: ZHOU Jun-zhuo, HAO Jia, YU Xiao-chang, ZHOU Jian, DENG Chen-wei, YU Yi-ting. Recent advances in metasurfaces for polarization imaging[J]. Chinese Optics, 2023, 16(5): 973-995. doi: 10.37188/CO.2022-0234

Recent advances in metasurfaces for polarization imaging

doi: 10.37188/CO.2022-0234
Funds:  Supported by National Natural Science Foundation of China (No. 51975483); Key Research and Development Projects of Shaanxi Province (No. 2020ZDLGY01-03); Natural Science Foundation of Ningbo (No. 202003N4033); Science and Development Program of Local Lead by Central Government, Shenzhen Science and Technology Innovation Committee (No. 2021Szvup112); Science, Technology and Innovation Commission of Shenzhen Municipality (No. YFJGJS1.0)
More Information
  • Corresponding author: yyt@nwpu.edu.cn
  • Received Date: 16 Nov 2022
  • Rev Recd Date: 23 Dec 2022
  • Available Online: 07 Feb 2023
  • Polarization imaging, a novel photoelectric detection technology, can simultaneously acquire the contour information and polarization features of a scene. For specific application scenarios, polarization imaging has the excellent ability to distinguish different objects and highlight their outlines. Therefore, polarization imaging has been widely applied in the fields of object detection, underwater imaging, life science, environmental monitoring, 3D imaging, etc. Polarization splitting or the filtering device is the core element in a polarization imaging system. The traditional counterpart suffers from a bulky size, poor optical performance, and being sensitive to external disturbances, and can hardly meet the requirements of a highly integrated, highly functional, and highly stable polarization imaging system. A metasurface is a two-dimensional planar photonic device whose comprising units are arranged quasi-periodically at subwavelength intervals, and can finely regulate the amplitude and phase of the light field in different polarization directions. Polarization devices based on metasurface are featured with compactness, lightweight and multi-degree freedom, offering an original solution to ultracompact polarization imaging systems. Targeted at the field of polarization imaging, this paper illustrates the functional theory, developmental process and future tendency of related metasurfaces. We discuss the challenges and prospect on the future of imaging applications and systematic integrations with metasurfaces.


  • loading
  • [1]
    TORRANCE K E, SPARROW E M. Theory for off-specular reflection from roughened surfaces[J]. Journal of the Optical Society of America, 1967, 57(9): 1105-1114. doi: 10.1364/JOSA.57.001105
    PRIEST R G, MEIER S R. Polarimetric microfacet scattering theory with applications to absorptive and reflective surfaces[J]. Optical Engineering, 2002, 41(5): 988-993. doi: 10.1117/1.1467360
    GURTON K P, DAHMANI R. Effect of surface roughness and complex indices of refraction on polarized thermal emission[J]. Applied Optics, 2005, 44(26): 5361-5367. doi: 10.1364/AO.44.005361
    HYDE IV M W, SCHMIDT J D, HAVRILLA M J. A geometrical optics polarimetric bidirectional reflectance distribution function for dielectric and metallic surfaces[J]. Optics Express, 2009, 17(24): 22138-22153. doi: 10.1364/OE.17.022138
    杨志勇, 陆高翔, 张志伟, 等. 热辐射环境下目标红外偏振特性分析[J]. 光学学报,2022,42(2):0220001. doi: 10.3788/AOS202242.0220001

    YANG ZH Y, LU G X, ZHANG ZH W, et al. Analysis of infrared polarization characteristics of target in thermal radiation environment[J]. Acta Optica Sinica, 2022, 42(2): 0220001. (in Chinese) doi: 10.3788/AOS202242.0220001
    YANG B, YAN CH X, ZHANG J Q, et al. Refractive index and surface roughness estimation using passive multispectral and multiangular polarimetric measurements[J]. Optics Communications, 2016, 381: 336-345. doi: 10.1016/j.optcom.2016.07.042
    ZHANG Y, ZHANG Y, ZHAO H J, et al. Improved atmospheric effects elimination method for pBRDF models of painted surfaces[J]. Optics Express, 2017, 25(14): 16458-16475. doi: 10.1364/OE.25.016458
    ZHANG Y, XUAN J B, ZHAO H J, et al. Roughness estimation of inhomogeneous paint based on polarization imaging detection[J]. Proceedings of SPIE, 2018, 10849: 1084910.
    ZHAN H Y, VOELZ D G, KUPINSKI M. Parameter-based imaging from passive multispectral polarimetric measurements[J]. Optics Express, 2019, 27(20): 28832-28843. doi: 10.1364/OE.27.028832
    GURTON K, FELTON M, MACK R, et al. MidIR and LWIR polarimetric sensor comparison study[J]. Proceedings of SPIE, 2010, 7672: 767205. doi: 10.1117/12.850341
    GURTON K P, FELTON M. Remote detection of buried land-mines and IEDs using LWIR polarimetric imaging[J]. Optics Express, 2012, 20(20): 22344-22359. doi: 10.1364/OE.20.022344
    ROWE M P, PUGH E N, TYO J S, et al. Polarization-difference imaging: a biologically inspired technique for observation through scattering media[J]. Optics Letters, 1995, 20(6): 608-610. doi: 10.1364/OL.20.000608
    SCHECHNER Y Y, KARPEL N. Recovery of underwater visibility and structure by polarization analysis[J]. IEEE Journal of Oceanic Engineering, 2005, 30(3): 570-587. doi: 10.1109/JOE.2005.850871
    TREIBITZ T, SCHECHNER Y Y. Active polarization descattering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(3): 385-399. doi: 10.1109/TPAMI.2008.85
    HAN P L, LIU F, WEI Y, et al. Optical correlation assists to enhance underwater polarization imaging performance[J]. Optics and Lasers in Engineering, 2020, 134: 106256. doi: 10.1016/j.optlaseng.2020.106256
    LIU Y, YORK T, AKERS W J, et al. Complementary fluorescence-polarization microscopy using division-of-focal-plane polarization imaging sensor[J]. Journal of Biomedical Optics, 2012, 17(11): 116001. doi: 10.1117/1.JBO.17.11.116001
    HE CH, HE H H, CHANG J T, et al. Polarisation optics for biomedical and clinical applications: a review[J]. Light:Science &Applications, 2021, 10(1): 194.
    ANDRE Y, LAHERRERE J M, BRET-DIBAT T, et al. Instrumental concept and performances of the POLDER instrument[J]. Proceedings of SPIE, 1995, 2572: 79-90. doi: 10.1117/12.216932
    CHENAULT D B, VADEN J P, MITCHELL D A, et al. Infrared polarimetric sensing of oil on water[J]. Proceedings of SPIE, 2016, 9999: 99990D.
    YUFFA A J, GURTON K P, VIDEEN G. Three-dimensional facial recognition using passive long-wavelength infrared polarimetric imaging[J]. Applied Optics, 2014, 53(36): 8514-8521. doi: 10.1364/AO.53.008514
    RIGGAN B S, SHORT N J, HU SH W, et al. . Estimation of visible spectrum faces from polarimetric thermal faces[C]. 2016 IEEE 8th International Conference on Biometrics Theory, Applications and Systems (BTAS), IEEE, 2016: 1-7.
    张景华, 张焱, 石志广, 等. 基于法向量估计的透明物体表面反射光分离[J]. 光学学报,2021,41(15):1526001. doi: 10.3788/AOS202141.1526001

    ZHANG J H, ZHANG Y, SHI ZH G, et al. Reflected light separation on transparent object surface based on normal vector estimation[J]. Acta Optica Sinica, 2021, 41(15): 1526001. (in Chinese) doi: 10.3788/AOS202141.1526001
    LI N, ZHAO Y Q, PAN Q, et al. Removal of reflections in LWIR image with polarization characteristics[J]. Optics Express, 2018, 26(13): 16488-16504. doi: 10.1364/OE.26.016488
    KONG N, TAI Y W, SHIN J S. A physically-based approach to reflection separation: from physical modeling to constrained optimization[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(2): 209-221. doi: 10.1109/TPAMI.2013.45
    NARASIMHAN S G, NAYAR S K. Vision and the atmosphere[J]. International Journal of Computer Vision, 2002, 48(3): 233-254. doi: 10.1023/A:1016328200723
    SCHECHNER Y Y, NARASIMHAN S G, NAYAR S K. Polarization-based vision through haze[J]. Applied Optics, 2003, 42(3): 511-525. doi: 10.1364/AO.42.000511
    LI N, ZHAO Y Q, PAN Q, et al. Illumination-invariant road detection and tracking using LWIR polarization characteristics[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 180: 357-369. doi: 10.1016/j.isprsjprs.2021.08.022
    LI N, ZHAO Y Q, WU R Y, et al. Polarization-guided road detection network for LWIR division-of-focal-plane camera[J]. Optics Letters, 2021, 46(22): 5679-5682. doi: 10.1364/OL.441817
    YAROSLAVSKY A N, FENG X, YU S H, et al. Dual-wavelength optical polarization imaging for detecting skin cancer margins[J]. Journal of Investigative Dermatology, 2020, 140(10): 1994-2000.e1. doi: 10.1016/j.jid.2020.03.947
    MAIGNAN F, BRÉON F M, FÉDÈLE E, et al. Polarized reflectances of natural surfaces: spaceborne measurements and analytical modeling[J]. Remote Sensing of Environment, 2009, 113(12): 2642-2650. doi: 10.1016/j.rse.2009.07.022
    RIZKI AKBAR P, TETUKO S S J, KUZE H. A novel circularly polarized synthetic aperture radar (CP-SAR) system onboard a spaceborne platform[J]. International Journal of Remote Sensing, 2010, 31(4): 1053-1060. doi: 10.1080/01431160903156528
    CHUN C S L, FLEMING D L, HARVEY W A, et al. Polarization-sensitive thermal imaging sensor[J]. Proceedings of SPIE, 1995, 2552: 438-444. doi: 10.1117/12.218293
    PEZZANITI J L, CHENAULT D, GURTON K, et al. Detection of obscured targets with IR polarimetric imaging[J]. Proceedings of SPIE, 2014, 9072: 90721D.
    TYO J S, GOLDSTEIN D L, CHENAULT D B, et al. Review of passive imaging polarimetry for remote sensing applications[J]. Applied Optics, 2006, 45(22): 5453-5469. doi: 10.1364/AO.45.005453
    周奎, 单政, 张倩, 等. MEMS法布里-珀罗滤波芯片及其光谱探测应用研究进展[J]. 光学学报,2022,42(8):0800001. doi: 10.3788/AOS202242.0800001

    ZHOU K, SHAN ZH, ZHANG Q, et al. Research progresses of MEMS Fabry-Perot filtering chips and their applications for spectral detection[J]. Acta Optica Sinica, 2022, 42(8): 0800001. (in Chinese) doi: 10.3788/AOS202242.0800001
    GARLICK G F J, STEIGMANN G A, LAMB W E. Differential optical polarization detectors: US, 3992571[P]. 1976-11-16.
    FARLOW C A, CHENAULT D B, PEZZANITI J L, et al. Imaging polarimeter development and applications[J]. Proceedings of SPIE, 2002, 4481: 118-125. doi: 10.1117/12.452880
    DIRIX Y, TERVOORT T A, BASTIAANSEN C. Optical properties of oriented polymer/dye polarizers[J]. Macromolecules, 1995, 28(2): 486-491. doi: 10.1021/ma00106a011
    WOLFF L B, MANCINI T A, POULIQUEN P, et al. Liquid crystal polarization camera[J]. IEEE Transactions on Robotics and Automation, 1997, 13(2): 195-203. doi: 10.1109/70.563642
    BROER D J, VAN DER V J. Method of manufacturing a polarization filter and a polarization filter so obtained: US, 5024850[P]. 1991-06-18.
    ZHAO X J, BERMAK A, BOUSSAID F, et al. Liquid-crystal micropolarimeter array for full Stokes polarization imaging in visible spectrum[J]. Optics Express, 2010, 18(17): 17776-17787. doi: 10.1364/OE.18.017776
    MYHRE G, HSU W L, PEINADO A, et al. Liquid crystal polymer full-stokes division of focal plane polarimeter[J]. Optics Express, 2012, 20(25): 27393-27409. doi: 10.1364/OE.20.027393
    张士元, 孙子珺, 穆全全, 等. 用于偏振成像的液晶微偏振阵列研究进展[J]. 液晶与显示,2022,37(3):292-309. doi: 10.37188/CJLCD.2021-0330

    ZHANG SH Y, SUN Z J, MU Q Q, et al. Review on liquid crystal micropolarizer array for polarization imaging[J]. Chinese Journal of Liquid Crystals and Displays, 2022, 37(3): 292-309. (in Chinese) doi: 10.37188/CJLCD.2021-0330
    王骁乾, 沈冬, 郑致刚, 等. 液晶光控取向技术进展[J]. 液晶与显示,2015,30(5):737-751. doi: 10.3788/YJYXS20153005.0737

    WANG X Q, SHEN D, ZHENG ZH G, et al. Review on liquid crystal photoalignment technologies[J]. Chinese Journal of Liquid Crystals and Displays, 2015, 30(5): 737-751. (in Chinese) doi: 10.3788/YJYXS20153005.0737
    ZHAO J C, QIU M, YU X CH, et al. Defining deep-subwavelength-resolution, wide-color-gamut, and large-viewing-angle flexible subtractive colors with an ultrathin asymmetric Fabry-Perot lossy cavity[J]. Advanced Optical Materials, 2019, 7(23): 1900646. doi: 10.1002/adom.201900646
    BOKOR N, SHECHTER R, DAVIDSON N, et al. Achromatic phase retarder by slanted illumination of a dielectric grating with period comparable with the wavelength[J]. Applied Optics, 2001, 40(13): 2076-2080. doi: 10.1364/AO.40.002076
    付秀华, 林晓敏, 张功, 等. 红外宽波段亚波长金属线栅偏振元件的研制[J]. 中国激光,2021,48(9):0903002. doi: 10.3788/CJL202148.0903002

    FU X H, LIN X M, ZHANG G, et al. Development of infrared wide band polarizing elements with subwavelength metal wire grids[J]. Chinese Journal of Lasers, 2021, 48(9): 0903002. (in Chinese) doi: 10.3788/CJL202148.0903002
    YEH P. A new optical model for wire grid polarizers[J]. Optics Communications, 1978, 26(3): 289-292. doi: 10.1016/0030-4018(78)90203-1
    LALANNE P, LEMERCIER-LALANNE D. On the effective medium theory of subwavelength periodic structures[J]. Journal of Modern Optics, 1996, 43(10): 2063-2085. doi: 10.1080/09500349608232871
    TYAN R C, SALVEKAR A A, CHOU H P, et al. Design, fabrication, and characterization of form-birefringent multilayer polarizing beam splitter[J]. Journal of the Optical Society of America A, 1997, 14(7): 1627-1636. doi: 10.1364/JOSAA.14.001627
    AHN S W, LEE K D, KIM J S, et al. Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography[J]. Nanotechnology, 2005, 16(9): 1874-1877. doi: 10.1088/0957-4484/16/9/076
    YAMADA I, NISHII J, SAITO M. Incident angle and temperature dependence of WSi wire-grid polarizer[J]. Infrared Physics &Technology, 2014, 63: 92-96.
    XIA J, YUAN ZH H, WANG CH, et al. Design and fabrication of a linear polarizer in the 8-12μm infrared region with multilayer nanogratings[J]. OSA Continuum, 2019, 2(5): 1683-1692. doi: 10.1364/OSAC.2.001683
    ZHANG ZH G, DONG F L, CHENG T, et al. Nano-fabricated pixelated micropolarizer array for visible imaging polarimetry[J]. Review of Scientific Instruments, 2014, 85(10): 105002. doi: 10.1063/1.4897270
    SUN D, FENG B, YANG B, et al. Design and fabrication of an InGaAs focal plane array integrated with linear-array polarization grating[J]. Optics Letters, 2020, 45(6): 1559-1562. doi: 10.1364/OL.376110
    GRUEV V, PERKINS R, YORK T. CCD polarization imaging sensor with aluminum nanowire optical filters[J]. Optics Express, 2010, 18(18): 19087-19094. doi: 10.1364/OE.18.019087
    GRUEV V. Fabrication of a dual-layer aluminum nanowires polarization filter array[J]. Optics Express, 2011, 19(24): 24361-24369. doi: 10.1364/OE.19.024361
    MA X, DONG F L, ZHANG ZH G, et al. Pixelated-polarization-camera-based polarimetry system for wide real-time optical rotation measurement[J]. Sensors and Actuators B:Chemical, 2019, 283: 857-864. doi: 10.1016/j.snb.2018.12.098
    曹暾, 刘宽, 李阳, 等. 可调谐光学超构材料及其应用[J]. 中国光学,2021,14(4):968-985. doi: 10.37188/CO.2021-0080

    CAO T, LIU K, LI Y, et al. Tunable optical metamaterials and their applications[J]. Chinese Optics, 2021, 14(4): 968-985. (in Chinese) doi: 10.37188/CO.2021-0080
    SHELBY R A, SMITH D R, SCHULTZ S. Experimental verification of a negative index of refraction[J]. Science, 2001, 292(5514): 77-79. doi: 10.1126/science.1058847
    VESELAGO V G. The electrodynamics of substances with simultaneously negative values of ε and μ[J]. Soviet Physics Uspekhi, 1968, 10(4): 509-514. doi: 10.1070/PU1968v010n04ABEH003699
    田小永, 尹丽仙, 李涤尘. 三维超材料制造技术现状与趋势[J]. 光电工程,2017,44(1):69-76.

    TIAN X Y, YIN L X, LI D CH. Current situation and trend of fabrication technologies for three-dimensional metamaterials[J]. Opto-Electronic Engineering, 2017, 44(1): 69-76. (in Chinese)
    余晓畅, 许雅晴, 蔡佳辰, 等. 可调微纳滤波结构的研究进展[J]. 中国光学,2021,14(5):1069-1088. doi: 10.37188/CO.2021-0044

    YU X CH, XU Y Q, CAI J CH, et al. Progress of tunable micro-nano filtering structures[J]. Chinese Optics, 2021, 14(5): 1069-1088. (in Chinese) doi: 10.37188/CO.2021-0044
    付娆, 李子乐, 郑国兴. 超构表面的振幅调控及其功能器件研究进展[J]. 中国光学,2021,14(4):886-899. doi: 10.37188/CO.2021-0017

    FU R, LI Z L, ZHENG G X. Research development of amplitude-modulated metasurfaces and their functional devices[J]. Chinese Optics, 2021, 14(4): 886-899. (in Chinese) doi: 10.37188/CO.2021-0017
    YU N F, GENEVET P, KATS M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333-337. doi: 10.1126/science.1210713
    YU N F, AIETA F, GENEVET P, et al. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces[J]. Nano Letters, 2012, 12(12): 6328-6333. doi: 10.1021/nl303445u
    DENG Y D, CAI Z R, DING Y T, et al. Recent progress in metasurface-enabled optical waveplates[J]. Nanophotonics, 2022, 11(10): 2219-2244. doi: 10.1515/nanoph-2022-0030
    JIANG ZH H, LIN L, MA D, et al. Broadband and wide field-of-view plasmonic metasurface-enabled waveplates[J]. Scientific Reports, 2014, 4: 7511. doi: 10.1038/srep07511
    刘东明, 吕婷婷, 刘强, 等. 可开关的多功能超构表面波片特性研究[J]. 中国光学,2021,14(4):1029-1037. doi: 10.37188/CO.2021-0100

    LIU D M, LV T T, LIU Q, et al. Performance study on switchable and multifunctional metasurface wave plate[J]. Chinese Optics, 2021, 14(4): 1029-1037. (in Chinese) doi: 10.37188/CO.2021-0100
    LI J X, WANG Y Q, CHEN CH, et al. From lingering to rift: metasurface decoupling for near- and far-field functionalization[J]. Advanced Materials, 2021, 33(16): 2007507. doi: 10.1002/adma.202007507
    WU T, ZHANG X Q, XU Q, et al. Dielectric metasurfaces for complete control of phase, amplitude, and polarization[J]. Advanced Optical Materials, 2022, 10(1): 2101223. doi: 10.1002/adom.202101223
    KARIMI E, SCHULZ S A, DE LEON I, et al. Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface[J]. Light:Science &Applications, 2014, 3(5): e167.
    AHMED H, KIM H, ZHANG Y B, et al. Optical metasurfaces for generating and manipulating optical vortex beams[J]. Nanophotonics, 2022, 11(5): 941-956. doi: 10.1515/nanoph-2021-0746
    于洋, 仲帆, 江西, 等. 基于旋转超表面的相干自旋霍尔效应的可调光束[J]. 中国光学,2021,14(4):927-934. doi: 10.37188/CO.2021-0097

    YU Y, ZHONG F, JIANG X, et al. Dynamical optical beam produced in rotational metasurface based on coherent spin hall effect[J]. Chinese Optics, 2021, 14(4): 927-934. (in Chinese) doi: 10.37188/CO.2021-0097
    倪一博, 闻顺, 沈子程, 等. 基于超构表面的多维光场感知[J]. 中国激光,2021,48(19):1918003. doi: 10.3788/CJL202148.1918003

    NI Y B, WEN SH, SHEN Z CH, et al. Multidimensional light field sensing based on metasurfaces[J]. Chinese Journal of Lasers, 2021, 48(19): 1918003. (in Chinese) doi: 10.3788/CJL202148.1918003
    KILDISHEV A V, BOLTASSEVA A, SHALAEV V M. Planar photonics with metasurfaces[J]. Science, 2013, 339(6125): 1232009. doi: 10.1126/science.1232009
    麦尔·斯蒂芬. 等离激元学: 基础与应用[M]. 张彤, 王琦龙, 张晓阳, 等, 译. 南京: 东南大学出版社, 2014: 3-13.

    MAIER S A. Plasmonics: Fundamentals and Applications[M]. ZHANG T, WANG Q L, ZHANG X Y, et al. , trans. Nanjing: Southeast University Press, 2014: 3-13. (in Chinese)
    AIETA F, GENEVET P, KATS M A, et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces[J]. Nano Letters, 2012, 12(9): 4932-4936. doi: 10.1021/nl302516v
    NI X J, ISHII S, KILDISHEV A V, et al. Ultra-thin, planar, Babinet-inverted plasmonic metalenses[J]. Light:Science &Applications, 2013, 2(4): e72.
    SUN SH L, YANG K Y, WANG C M, et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces[J]. Nano Letters, 2012, 12(12): 6223-6229. doi: 10.1021/nl3032668
    DING F, YANG Y Q, DESHPANDE R A, et al. A review of gap-surface plasmon metasurfaces: fundamentals and applications[J]. Nanophotonics, 2018, 7(6): 1129-1156. doi: 10.1515/nanoph-2017-0125
    KIM H C, CHENG X. SERS-active substrate based on gap surface plasmon polaritons[J]. Optics Express, 2009, 17(20): 17234-17241. doi: 10.1364/OE.17.017234
    郭绮琪, 陈溢杭. 基于介电常数近零模式与间隙表面等离激元强耦合的增强非线性光学效应[J]. 物理学报,2021,70(18):187303. doi: 10.7498/aps.70.20210290

    GUO Q Q, CHEN Y H. Enhanced nonlinear optical effects based on strong coupling between epsilon-near-zero mode and gap surface plasmons[J]. Acta Physica Sinica, 2021, 70(18): 187303. (in Chinese) doi: 10.7498/aps.70.20210290
    PORS A, NIELSEN M G, BOZHEVOLNYI S I. Plasmonic metagratings for simultaneous determination of Stokes parameters[J]. Optica, 2015, 2(8): 716-723. doi: 10.1364/OPTICA.2.000716
    SHALTOUT A, LIU J J, KILDISHEV A, et al. Photonic spin hall effect in gap–plasmon metasurfaces for on-chip chiroptical spectroscopy[J]. Optica, 2015, 2(10): 860-863. doi: 10.1364/OPTICA.2.000860
    BOROVIKS S, DESHPANDE R A, MORTENSEN N A, et al. Multifunctional metamirror: polarization splitting and focusing[J]. ACS Photonics, 2018, 5(5): 1648-1653. doi: 10.1021/acsphotonics.7b01091
    DING F, CHEN Y T, BOZHEVOLNYI S I. Gap-surface plasmon metasurfaces for linear-polarization conversion, focusing, and beam splitting[J]. Photonics Research, 2020, 8(5): 707-714. doi: 10.1364/PRJ.386655
    ZHANG J, ELKABBASHIM, WEIR, et al. Plasmon metasurfaces with 42.39% transmission efficiency in visible[J]. Light:Science &Applications, 2019, 8(1): 53.
    WEI SH W, YANG ZH Y, ZHAO M. Design of ultracompact polarimeters based on dielectric metasurfaces[J]. Optics Letters, 2017, 42(8): 1580-1583. doi: 10.1364/OL.42.001580
    LIN D M, FAN P Y, HASMAN E, et al. Dielectric gradient metasurface optical elements[J]. Science, 2014, 345(6194): 298-302. doi: 10.1126/science.1253213
    HU Y Q, WANG X D, LUO X H, et al. All-dielectric metasurfaces for polarization manipulation: principles and emerging applications[J]. Nanophotonics, 2020, 9(12): 3755-3780. doi: 10.1515/nanoph-2020-0220
    KHORASANINEJAD M, CHEN W T, ZHU A Y, et al. Multispectral chiral imaging with a metalens[J]. Nano Letters, 2016, 16(7): 4595-4600. doi: 10.1021/acs.nanolett.6b01897
    YANG ZH Y, WANG ZH K, WANG Y X, et al. Generalized Hartmann-Shack array of dielectric metalens sub-arrays for polarimetric beam profiling[J]. Nature Communications, 2018, 9(1): 4607. doi: 10.1038/s41467-018-07056-6
    刘永健, 张飞, 谢婷, 等. 基于伴随仿真的偏振复用超构透镜[J]. 中国光学,2021,14(4):754-763. doi: 10.37188/CO.2021-0035

    LIU Y J, ZHANG F, XIE T, et al. Polarization-multiplexed metalens enabled by adjoint optimization[J]. Chinese Optics, 2021, 14(4): 754-763. (in Chinese) doi: 10.37188/CO.2021-0035
    KHORASANINEJAD M, CHEN W T, DEVLIN R C, et al. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 2016, 352(6290): 1190-1194. doi: 10.1126/science.aaf6644
    ZHAO J C, YU X CH, ZHOU K, et al. Polarization-sensitive subtractive structural color used for information encoding and dynamic display[J]. Optics and Lasers in Engineering, 2021, 138: 106421. doi: 10.1016/j.optlaseng.2020.106421
    范智斌, 陈泽茗, 周鑫, 等. 氮化硅光子器件与应用研究进展[J]. 中国光学,2021,14(4):998-1018. doi: 10.37188/CO.2021-0093

    FAN ZH B, CHEN Z M, ZHOU X, et al. Recent advances in silicon nitride-based photonic devices and applications[J]. Chinese Optics, 2021, 14(4): 998-1018. (in Chinese) doi: 10.37188/CO.2021-0093
    PANCHARATNAM S. Generalized theory of interference and its applications[J]. Proceedings of the Indian Academy of Sciences - Section A, 1956, 44(6): 398-417. doi: 10.1007/BF03046095
    BERRY M V. Quantal phase factors accompanying adiabatic changes[J]. Proceedings of the Royal Society A:Mathematical,Physical and Engineering Sciences, 1984, 392(1802): 45-57.
    HSIAO H H, CHU C H, TSAI D P. Fundamentals and applications of metasurfaces[J]. Small Methods, 2017, 1(4): 1600064. doi: 10.1002/smtd.201600064
    ARBABI A, HORIE Y, BAGHERI M, et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission[J]. Nature Nanotechnology, 2015, 10(11): 937-943. doi: 10.1038/nnano.2015.186
    ARBABI E, KAMALI S M, ARBABI A, et al. Full-Stokes imaging polarimetry using dielectric metasurfaces[J]. ACS Photonics, 2018, 5(8): 3132-3140. doi: 10.1021/acsphotonics.8b00362
    YAN CH, LI X, PU M B, et al. Midinfrared real-time polarization imaging with all-dielectric metasurfaces[J]. Applied Physics Letters, 2019, 114(16): 161904. doi: 10.1063/1.5091475
    REN Y Z, GUO SH H, ZHU W Q, et al. Full-Stokes polarimetry for visible light enabled by an all-dielectric metasurface[J]. Advanced Photonics Research, 2022, 3(7): 2100373. doi: 10.1002/adpr.202100373
    RUBIN N A, D’AVERSA G, CHEVALIER P, et al. Matrix Fourier optics enables a compact full-Stokes polarization camera[J]. Science, 2019, 365(6448): eaax1839. doi: 10.1126/science.aax1839
    RUBIN N A, CHEVALIER P, JUHL M, et al. Imaging polarimetry through metasurface polarization gratings[J]. Optics Express, 2022, 30(6): 9389-9412. doi: 10.1364/OE.450941
    CHEN W T, ZHU A Y, SANJEEV V, et al. A broadband achromatic metalens for focusing and imaging in the visible[J]. Nature Nanotechnology, 2018, 13(3): 220-226. doi: 10.1038/s41565-017-0034-6
    李效欣. 基于超表面的宽带消色差偏振成像研究[D]. 哈尔滨: 哈尔滨工业大学, 2021: 7-10.

    LI X X. Broadband achromatic polarization imaging based on metasurface[D]. Harbin: Harbin Institute of Technology, 2021: 7-10. (in Chinese)
    KHORASANINEJAD M, SHI Z, ZHU A Y, et al. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion[J]. Nano Letters, 2017, 17(3): 1819-1824. doi: 10.1021/acs.nanolett.6b05137
    AIETA F, KATS M A, GENEVET P, et al. Multiwavelength achromatic metasurfaces by dispersive phase compensation[J]. Science, 2015, 347(6228): 1342-1345. doi: 10.1126/science.aaa2494
    WANG SH M, WU P C, SU V C, et al. Broadband achromatic optical metasurface devices[J]. Nature Communications, 2017, 8(1): 187. doi: 10.1038/s41467-017-00166-7
    CHENG Q Q, MA M L, YU D, et al. Broadband achromatic metalens in terahertz regime[J]. Science Bulletin, 2019, 64(20): 1525-1531. doi: 10.1016/j.scib.2019.08.004
    OU K, YU F L, LI G H, et al. Mid-infrared polarization-controlled broadband achromatic metadevice[J]. Science Advances, 2020, 6(37): eabc0711. doi: 10.1126/sciadv.abc0711
    欧凯. 人工微结构超表面的光场调控物理及其应用[D]. 上海: 中国科学院大学(中国科学院上海技术物理研究所), 2021: 47-60.

    OU K. Manipulation the light based on artificial microstructure metasurfaces and its applications[D]. Shanghai: University of Chinese Academy of Sciences (Shanghai Institute of Technical Physics, Chinese Academy of Sciences), 2021: 47-60. (in Chinese)
    FENG X, WANG Y X, WEI Y X, et al. Optical multiparameter detection system based on a broadband achromatic metalens array[J]. Advanced Optical Materials, 2021, 9(19): 2100772. doi: 10.1002/adom.202100772
    肖行健, 祝世宁, 李涛. 宽带消色差平面透镜的设计与参量分析[J]. 红外与激光工程,2020,49(9):20201032. doi: 10.3788/IRLA20201032

    XIAO X J, ZHU SH N, LI T. Design and parametric analysis of the broadband achromatic flat lens[J]. Infrared and Laser Engineering, 2020, 49(9): 20201032. (in Chinese) doi: 10.3788/IRLA20201032
    CHEN J, HU SH SH, ZHU SH N, et al. Metamaterials: from fundamental physics to intelligent design[J]. Interdisciplinary Materials, 2023, 3(1): 5-29.
    WIECHA P R, ARBOUET A, GIRARD C, et al. Deep learning in nano-photonics: inverse design and beyond[J]. Photonics Research, 2021, 9(5): B182-B200. doi: 10.1364/PRJ.415960
    WANG P, MOHAMMAD N, MENON R. Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing[J]. Scientific Reports, 2016, 6: 21545. doi: 10.1038/srep21545
    盛小航, 周韶东, 席科磊, 等. 基于相变材料的多阶折射率薄膜平板透镜[J]. 光学学报,2022,42(19):1916002. doi: 10.3788/AOS202242.1916002

    SHENG X H, ZHOU SH D, XI K L, et al. Multi-order refractive index thin-film flat lens based on phase change materials[J]. Acta Optica Sinica, 2022, 42(19): 1916002. (in Chinese) doi: 10.3788/AOS202242.1916002
    MEEM M, BANERJI S, MAJUMDER A, et al. Broadband lightweight flat lenses for long-wave infrared imaging[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(43): 21375-21378. doi: 10.1073/pnas.1908447116
    BANERJI S, MEEM M, MAJUMDER A, et al. Imaging with flat optics: metalenses or diffractive lenses?[J]. Optica, 2019, 6(6): 805-810. doi: 10.1364/OPTICA.6.000805
    WANG F L, GENG G ZH, WANG X Q, et al. Visible achromatic metalens design based on artificial neural network[J]. Advanced Optical Materials, 2022, 10(3): 2101842. doi: 10.1002/adom.202101842
    GU Y J, HAO R, LI E P. Independent bifocal metalens design based on deep learning algebra[J]. IEEE Photonics Technology Letters, 2021, 33(8): 403-406. doi: 10.1109/LPT.2021.3066595
    徐东. 基于深度学习的相位调控型超构表面器件设计[D]. 成都: 中国科学院大学(中国科学院光电技术研究所), 2021: 5-9.

    XU D. Design of phase-modulating metasurface device based on deep learning[D]. Chengdu: University of Chinese Academy of Sciences (The Institute of Optics and Electronics, the Chinese Academy of Sciences), 2021: 5-9. (in Chinese)
    MA W, XU Y H, XIONG B, et al. Pushing the limits of functionality-multiplexing capability in metasurface design based on statistical machine learning[J]. Advanced Material, 2022, 34(16): 2110022. doi: 10.1002/adma.202110022
    AN X P, CAO Y, WEI Y X, et al. Broadband achromatic metalens design based on deep neural networks[J]. Optics Letters, 2021, 46(16): 3881-3884. doi: 10.1364/OL.427221
    ZHU R CH, QIU T SH, WANG J F, et al. Phase-to-pattern inverse design paradigm for fast realization of functional metasurfaces via transfer learning[J]. Nature Communications, 2021, 12(1): 2974. doi: 10.1038/s41467-021-23087-y
    LIPTON Z C. The mythos of model interpretability: In machine learning, the concept of interpretability is both important and slippery[J]. Queue, 2018, 16(3): 31-57. doi: 10.1145/3236386.3241340
    SHE A L, ZHANG SH Y, SHIAN S, et al. Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift[J]. Science Advances, 2018, 4(2): eaap9957. doi: 10.1126/sciadv.aap9957
    SHAPIRA C, YARIV I, ANKRI R, et al. Effect of optical magnification on the detection of the reduced scattering coefficient in the blue regime: theory and experiments[J]. Optics Express, 2021, 29(14): 22228-22239. doi: 10.1364/OE.431929
    LIM T Y, PARK S C. Achromatic and athermal lens design by redistributing the element powers on an athermal glass map[J]. Optics Express, 2016, 24(16): 18049-18058. doi: 10.1364/OE.24.018049
    解娜, 崔庆丰. 基于权重分组的可见光光学系统无热化设计[J]. 光学学报,2018,38(12):1222001. doi: 10.3788/AOS201838.1222001

    XIE N, CUI Q F. Athermalization design of visible light optical system based on grouping by weight[J]. Acta Optica Sinica, 2018, 38(12): 1222001. (in Chinese) doi: 10.3788/AOS201838.1222001
    ASHTON A. Zoom lens systems[J]. Proceedings of SPIE, 1979, 163: 92-98. doi: 10.1117/12.956916
    PARR-BURMAN P, GARDAM A. The development of a compact I. R. zoom telescope[J]. Proceedings of SPIE, 1986, 590: 11-17. doi: 10.1117/12.951960
    EE H S, AGARWAL R. Tunable metasurface and flat optical zoom lens on a stretchable substrate[J]. Nano Letters, 2016, 16(4): 2818-2823. doi: 10.1021/acs.nanolett.6b00618
    SONG SH CH, MA X L, PU M B, et al. Actively tunable structural color rendering with tensile substrate[J]. Advanced Optical Materials, 2017, 5(9): 1600829. doi: 10.1002/adom.201600829
    ARBABI E, ARBABI A, KAMALI S M, et al. MEMS-tunable dielectric metasurface lens[J]. Nature Communications, 2018, 9(1): 812. doi: 10.1038/s41467-018-03155-6
    CUI T, BAI B F, SUN H B. Tunable metasurfaces based on active materials[J]. Advanced Functional Materials, 2019, 29(10): 1806692. doi: 10.1002/adfm.201806692
    KIM J, SEONG J, YANG Y, et al. Tunable metasurfaces towards versatile metalenses and metaholograms: a review[J]. Advanced Photonics, 2022, 4(2): 024001.
    LININGER A, ZHU A Y, PARK J S, et al. Optical properties of metasurfaces infiltrated with liquid crystals[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(34): 20390-20396. doi: 10.1073/pnas.2006336117
    XU N, HAO Y, JIE K Q, et al. Electrically-driven zoom metalens based on dynamically controlling the phase of barium titanate (BTO) column antennas[J]. Nanomaterials, 2021, 11(3): 729. doi: 10.3390/nano11030729
    QIN SH, XU N, HUANG H, et al. Near-infrared thermally modulated varifocal metalens based on the phase change material Sb2S3[J]. Optics Express, 2021, 29(5): 7925-7934. doi: 10.1364/OE.420014
    YIN X H, STEINLE T, HUANG L L, et al. Beam switching and bifocal zoom lensing using active plasmonic metasurfaces[J]. Light:Science &Applications, 2017, 6(7): e17016.
    YU ZH N, DESHPANDE P, WU W, et al. Reflective polarizer based on a stacked double-layer subwavelength metal grating structure fabricated using nanoimprint lithography[J]. Applied Physics Letters, 2000, 77(7): 927-929. doi: 10.1063/1.1288674
    KANG W D, CHU J K, ZENG X W, et al. Large-area flexible infrared nanowire grid polarizer fabricated using nanoimprint lithography[J]. Applied Optics, 2018, 57(18): 5230-5234. doi: 10.1364/AO.57.005230
    YAMADA I, FUKUMI K, NISHII J, et al. Infrared wire-grid polarizer with Y2O3 ceramic substrate[J]. Optics Letters, 2010, 35(18): 3111-3113. doi: 10.1364/OL.35.003111
    李奥凌, 段辉高, 贾红辉, 等. 中红外波段超构透镜研究进展[J]. 光学 精密工程,2022,30(19):2313-2331.

    LI A L, DUAN H G, JIA H H, et al. Research progress of metalenses in mid-infrared band[J]. Optics and Precision Engineering, 2022, 30(19): 2313-2331. (in Chinese)
    PEZZANITI J L, CHENAULT D B. A division of aperture MWIR imaging polarimeter[J]. Proceedings of SPIE, 2005, 5888: 239-250.
    HAO J, WANG Y, ZHOU K, et al. New diagonal micropolarizer arrays designed by an improved model in Fourier domain[J]. Scientific Reports, 2021, 11(1): 5778. doi: 10.1038/s41598-021-85103-x
    郝佳, 王燕, 周奎, 等. 基于改进模型的新型对角微偏振阵列设计[J]. 光学 精密工程,2021,29(10):2363-2374. doi: 10.37188/OPE.2021.0173

    HAO J, WANG Y, ZHOU K, et al. Optimized design model of novel diagonal micropolarizer arrays[J]. Optics and Precision Engineering, 2021, 29(10): 2363-2374. (in Chinese) doi: 10.37188/OPE.2021.0173
    余晓畅, 赵建村, 虞益挺. 像素级光学滤波-探测集成器件的研究进展[J]. 光学 精密工程,2019,27(5):999-1012. doi: 10.3788/OPE.20192705.0999

    YU X CH, ZHAO J C, YU Y T. Research progress of pixel-level integrated devices for spectral imaging[J]. Optics and Precision Engineering, 2019, 27(5): 999-1012. (in Chinese) doi: 10.3788/OPE.20192705.0999
    YU X CH, SU Y, SONG X K, et al. Batch fabrication and compact integration of customized multispectral filter arrays towards snapshot imaging[J]. Optics Express, 2021, 29(19): 30655-30665. doi: 10.1364/OE.439390
    GAN ZH F, FENG H T, CHEN L Y, et al. Spatial modulation of nanopattern dimensions by combining interference lithography and grayscale-patterned secondary exposure[J]. Light:Science &Applications, 2022, 11(1): 89.
    HOU M M, CHEN Y, YI F. Lightweight long-wave infrared camera via a single 5-centimeter-aperture metalens[C]. 2022 Conference on Lasers and Electro-Optics (CLEO), IEEE, 2022: 1-2.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article views(1800) PDF downloads(969) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint