Turn off MathJax
Article Contents
SU Yun, GE Jing-jing, WANG Ye-chao, WANG Le-ran, WANG Yu, ZHENG Zi-xi, SHAO Xiao-peng. Research progress on high-resolution imaging system for optical remote sensing in aerospace[J]. Chinese Optics. doi: 10.37188/CO.2022-0085
Citation: SU Yun, GE Jing-jing, WANG Ye-chao, WANG Le-ran, WANG Yu, ZHENG Zi-xi, SHAO Xiao-peng. Research progress on high-resolution imaging system for optical remote sensing in aerospace[J]. Chinese Optics. doi: 10.37188/CO.2022-0085

Research progress on high-resolution imaging system for optical remote sensing in aerospace

doi: 10.37188/CO.2022-0085
Funds:  Supported by the National Natural Science Foundation of China (No. 6217031112, No. 61976169, No. 11774164)
More Information
  • With the continuous development of optical imaging technology and the growing demand for remote sensing applications, cross-scale high-resolution optical technology has been widely used in the field of remote sensing. In order to obtain more detailed information on the target, domestic and foreign researchers have carried out relevant research in different technical directions. In this paper, through the technical classification of remote sensing imaging, we introduce a representative aerospace optical remote sensing high-resolution imaging system. It focuses on monomer structure, block expandable imaging, optical interference synthesis aperture imaging, diffraction main mirror imaging, optical synthetic aperture and other technologies. It provides a new idea for the development of high-resolution optical remote sensing loads on the ground.


  • loading
  • [1]
    何国金, 李克鲁, 胡德永, 等. 多卫星遥感数据的信息融合: 理论、方法与实践[J]. 中国图象图形学报,1999,4(9):744-750.

    HE G J, LI K L, HU D Y, et al. Information fusion of multisensor satellite remote sensing data: theory, methodology and experiment[J]. Journal of Image and Graphics, 1999, 4(9): 744-750. (in Chinese)
    HUANG J P, YU H P, GUAN X D, et al. Accelerated dryland expansion under climate change[J]. Nature Climate Change, 2016, 6(2): 166-171. doi: 10.1038/nclimate2837
    FAN Y D, WEN Q, CHEN SH R. Engineering survey of the environment and disaster monitoring and forecasting small satellite constellation[J]. International Journal of Digital Earth, 2012, 5(3): 217-227. doi: 10.1080/17538947.2011.648540
    ZHANG P, HU X P, LU Q F, et al. FY-3E: the first operational meteorological satellite mission in an early morning orbit[J]. Advances in Atmospheric Sciences, 2022, 39(1): 1-8. doi: 10.1007/s00376-021-1304-7
    MARTIN S. An Introduction to Ocean Remote Sensing[J]. Oceanography, 2005, 18(3): 86-89. doi: 10.5670/oceanog.2005.36
    裴照宇, 侯军, 王琼. 光学技术在中国月球和深空探测中的应用(特约)[J]. 红外与激光工程,2020,49(5):20201002. doi: 10.3788/irla.2_invited-peizhaoyu

    PEI ZH Y, HOU J, WANG Q. Applications of optical technology in lunar and deep space exploration in China (Invited)[J]. Infrared and Laser Engineering, 2020, 49(5): 20201002. (in Chinese) doi: 10.3788/irla.2_invited-peizhaoyu
    曲宏松, 金光, 张叶. “Next View计划”与光学遥感卫星的发展趋势[J]. 中国光学与应用光学,2009,2(6):467-476.

    QU H S, JIN G, ZHANG Y. NextView program and progress in optical remote sensing satellites[J]. Chinese Journal of Optics and Applied Optics, 2009, 2(6): 467-476. (in Chinese)
    BRANDTBERG T, WARNER T. High-spatial-resolution remote sensing[M]//SHAO G F, REYNOLDS K M. Computer Applications in Sustainable Forest Management. Netherlands: Springer, 2006: 19-41.
    BENEDIKTSSON J A, CHANUSSOT J, MOON W M. Very high-resolution remote sensing: challenges and opportunities [Point of View][J]. Proceedings of the IEEE, 2012, 100(6): 1907-1910. doi: 10.1109/JPROC.2012.2190811
    AKUMU C E, AMADI E O, DENNIS S. Application of drone and WorldView-4 satellite data in mapping and monitoring grazing land cover and pasture quality: pre- and post-flooding[J]. Land, 2021, 10(3): 321. doi: 10.3390/land10030321
    TU T M, HUANG P S, HUNG C L, et al. A fast intensity–hue–saturation fusion technique with spectral adjustment for IKONOS imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2004, 1(4): 309-312. doi: 10.1109/LGRS.2004.834804
    AGUILAR M A, DEL MAR SALDAÑA M, AGUILAR F J, et al. Assessing geometric accuracy of the orthorectification process from GeoEye-1 and WorldView-2 panchromatic images[J]. International Journal of Applied Earth Observation and Geoinformation, 2013, 21: 427-435. doi: 10.1016/j.jag.2012.06.004
    ASADZADEH S, DE SOUZA FILHO C R. Investigating the capability of WorldView-3 superspectral data for direct hydrocarbon detection[J]. Remote Sensing of Environment, 2016, 173: 162-173. doi: 10.1016/j.rse.2015.11.030
    NGUYEN T T H, PHAM T A, LUONG T P. Estimate tropical forest stand volume using SPOT 5 satellite image[J]. IOP Conference Series:Earth and Environmental Science, 2021, 652(1): 012016. doi: 10.1088/1755-1315/652/1/012016
    曹福成. 高分系列遥感卫星 布设中国太空“慧眼”——我国高分专项建设回眸[J]. 中国军转民,2015(1):28-33. doi: 10.3969/j.issn.1008-5874.2015.01.006

    CAO F CH. The high-score series of remote sensing satellites is deployed in China’s Space “Wise Eye” - a review of China's high-score special construction[J]. Defense Industry Conversion in China, 2015(1): 28-33. (in Chinese) doi: 10.3969/j.issn.1008-5874.2015.01.006
    曾文, 林辉, 李新宇, 等. 基于高景一号遥感影像的林地信息提取[J]. 中南林业科技大学学报,2020,40(7):32-40. doi: 10.14067/j.cnki.1673-923x.2020.07.005

    ZENG W, LIN H, LI X Y, et al. Study on extracting forest information based on SV-1 image[J]. Journal of Central South University of Forestry &Technology, 2020, 40(7): 32-40. (in Chinese) doi: 10.14067/j.cnki.1673-923x.2020.07.005
    张召才. 吉林一号卫星组星[J]. 卫星应用,2015(11):1.

    ZHANG ZH C. Jilin No. 1 satellite group[J]. Satellite Application, 2015(11): 1. (in Chinese)
    CASOLINO M, PICOZZA P. Launch and commissioning of the PAMELA experiment on board the resurs-DK1 satellite[J]. Advances in Space Research, 2008, 41(12): 2064-2070. doi: 10.1016/j.asr.2007.06.062
    KRISHNA B G, SRINIVASAN T P, SRIVASTAVA P K. An integrated approach for topographical mapping from space using Cartosat-1 and Cartosat-2 imagery[C]//ISPRS Congress 2008. 2008.
    TU T M, HSU C L, TU P Y, et al. An adjustable pan-sharpening approach for IKONOS/QuickBird/GeoEye-1/WorldView-2 imagery[J]. IEEE Journal Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5(1): 125-134. doi: 10.1109/JSTARS.2011.2181827
    MURTHY K, SHEARN M, SMILEY B D, et al. SkySat-1: Very high-resolution imagery from a small satellite[J]. Proceedings of SPIE, 2014, 9241: 92411e.
    LEVIN N, JOHANSEN K, HACKER J M, et al. A New source for high spatial resolution night time images —— the EROS-B Commercial Satellite[J]. Remote Sensing of Environment, 2014, 149: 1-12. doi: 10.1016/j.rse.2014.03.019
    BEN-DAVID A. Ofeq-7 bolsters Israel's intelligence coverage[J]. Jane's Defence Weekly, 2007, 44(25): 17.
    LIU J F, WANG H J, SUN D W, et al. On-orbit adjustment and compensation for large aperture optical system[J]. Acta Optica Sinica,34(3):, 0322, 005: 2014.
    PANG ZH H, FAN X W, CHEN Q F, et al. Influence of surface-profile error of larger mirror on aberrations characteristics of optical system[J]. Acta Optica Sinica, 2013, 33(4): 0422002. doi: 10.3788/AOS201333.0422002
    LIU SH T, HU R, LI Q H, et al. Topology optimization-based lightweight primary mirror design of a large-aperture space telescope[J]. Applied Optics, 2014, 53(35): 8318-8325. doi: 10.1364/AO.53.008318
    HU R, LIU SH T, LI Q H. Topology-optimization-based design method of flexures for mounting the primary mirror of a large-aperture space telescope[J]. Applied Optics, 2017, 56(15): 4551-4560. doi: 10.1364/AO.56.004551
    YI K, MA P, QIU H, et al. Progress on large aperture transport mirrors[J]. Optics and Precision Engineering, 2016, 24(12): 2902-2907. doi: 10.3788/OPE.20162412.2902
    常君磊, 李庆林, 李富强, 等. 航天光学遥感探测器滤光片环境考核方法[J]. 航天器环境工程,2018,35(1):87-91. doi: 10.3969/j.issn.1673-1379.2018.01.016

    CHANG J L, LI Q L, LI F Q, et al. Environmental adaptability assessment of the filter of space optical remote sensor detector[J]. Spacecraft Environment Engineering, 2018, 35(1): 87-91. (in Chinese) doi: 10.3969/j.issn.1673-1379.2018.01.016
    ZHENG D H, CHEN L, ZHU W H. Research on adjusting and testing of off-axis paraboloid mirror with large aperture[J]. Proceedings of SPIE, 2016, 9684: 968406.
    MATHEW L M, DEEPAK B P, SABU B. Design and analysis of a metallic Ogive payload fairing for a new generation launch vehicle[J]. IOSR Journal of Mechanical and Civil Engineering, 2016, 13(5): 99-103.
    GUO J, GONG D P, ZHU L, et al. Calculation of overlapping pixels in interleaving assembly of CCD focal plane of mapping camera[J]. Optics and Precision Engineering, 2013, 21(5): 1251-1257. doi: 10.3788/OPE.20132105.1251
    ZHANG Y L, LU B, ZHANG W T, et al. A new method for detecting moving objects in video[J]. Journal of University of Electronic Science and Technology of China, 2019, 48(1): 46-52.
    LIN H B, BO Y CH, WANG J D, et al. Research progress in super-resolution mapping from remotely sensed imagery[J]. Journal of Image and Graphics, 2011, 16(4): 495-502.
    SICA L. Effects of nonredundance on a synthetic-aperture imaging system[J]. Journal of the Optical Society of America A, 1993, 10(4): 567-572. doi: 10.1364/JOSAA.10.000567
    MACKENZIE C, SWEETMAN B. Snakes and lasers[J]. Aviation Week & Space Technology, 2012.
    MATTHEW F, MATTHEW R, DOUGLAS E, et al. The future of Earth observation in hydrology[J]. Hydrology and Earth System Sciences, 2017, 21(7): 3879-3914.
    吴同舟, 王浩, 周峰, 等. 基于月球观测的“高分四号”卫星相机在轨MTF测试[J]. 航天返回与遥感,2019,40(1):41-49. doi: 10.3969/j.issn.1009-8518.2019.01.005

    WU T ZH, WANG H, ZHOU F, et al. The Lunar trail of GF-4 satellite and on-orbit knife-edge measurements of MTF[J]. Spacecraft Recovery &Remote Sensing, 2019, 40(1): 41-49. (in Chinese) doi: 10.3969/j.issn.1009-8518.2019.01.005
    郭疆. 碳化硅大口径空间反射镜设计与制造研究[D]. 长春: 吉林大学, 2019.

    GUO J. Research on design and manufacturing of large aperture space mirror of silicon carbide[D]. Changchun: Jilin University, 2019.
    汪逸群, 王龙, 郭万存, 等. 空间多用途双面反射镜的设计与制备[J]. 光学学报,2015,35(4):0428001. doi: 10.3788/AOS201535.0428001

    WANG Y Q, WANG L, GUO W C, et al. Design and manufacture of space all-purpose double-faced reflective mirror[J]. Acta Optica Sinica, 2015, 35(4): 0428001. (in Chinese) doi: 10.3788/AOS201535.0428001
    JAHNS J. J. TURUNEN, F. W (eds. ), Diffractive optics for industrial and commercial applications[M], Berlin: Akademie Verlag, , Germany, 1997: 426
    MADSEN C K. Linking diffractive and geometrical optics surface scattering at a fundamental level[J]. Optics and Photonics Journal, 2022, 12(1): 1-17. doi: 10.4236/opj.2022.121001
    DUFRESNE E R, GRIER D G. Optical tweezer arrays and optical substrates created with diffractive optics[J]. Review of Scientific Instruments, 1998, 69(5): 1974-1977. doi: 10.1063/1.1148883
    ATCHESON P D, STEWART C, DOMBER J, et al. MOIRE: Initial demonstration of a transmissive diffractive membrane optic for large lightweight optical telescopes[J]. Proceedings of SPIE, 2012, 8442: 844221. doi: 10.1117/12.925413
    ATCHESON P, DOMBER J, WHITEAKER K, et al. MOIRE: Ground demonstration of a large aperture diffractive transmissive telescope[J]. Proceedings of SPIE, 2014, 9143: 91431W.
    DOMBER J L, ATCHESON P D, KOMMERS J. MOIRE: Ground test bed results for a large membrane telescope[C]//Spacecraft Structures Conference. 2014.
    TANDY W D, COPP T, CAMPBELL L, et al.. MOIRE gossamer space telescope-membrane analysis[C]//Spacecraft Structures Conference. 2014.
    STAGUHN J G, BENFORD D J, ALLEN C A, et al. Instrument performance of GISMO, a 2 millimeter tes bolometer camera used at the IRAM 30 m telescope[J]. Proceedings of SPIE, 2008, 7020: 702004. doi: 10.1117/12.789764
    CATALANO O, MACCARONE M C, SANTANGELO A, et al. . EUSO-extreme universe space observatory[J]. International Cosmic Ray Conference, Springer, 2002.
    SANTANGELO A, PETROLINI A. Observing ultra-high-energy cosmic particles from space: s-EUSO, super-extreme universe space observatory mission[J]. New Journal of Physics, 2009, 11(6): 065010. doi: 10.1088/1367-2630/11/6/065010
    PETROLINI A. The extreme universe space observatory (EUSO) instrument[J]. Nuclear Physics B - Proceedings Supplements, 2002, 113(1-3): 329-336. doi: 10.1016/S0920-5632(02)01860-1
    TAKIZAWA Y, EBISUZAKI T, KAWASAKI Y, et al. JEM-EUSO: Extreme universe space observatory on JEM/ISS[J]. Nuclear Physics B-Proceedings Supplements, 2007, 166: 72-76. doi: 10.1016/j.nuclphysbps.2006.12.007
    ANDERSEN G, ASMOLOV O, DEARBORN M E, et al. FalconSAT-7: a membrane photon sieve CubeSat solar telescope[J]. Proceedings of SPIE, 2012, 8442: 84421C.
    ANDERSEN G P, ASMOLOVA O. FalconSAT-7: a membrane space telescope[J]. Proceedings of SPIE, 2014, 9143: 91431X.
    ANDERSEN G, ASMOLOVA O, MCHARG M G, et al. FalconSAT-7: a membrane space solar telescope[J]. Proceedings of SPIE, 2016, 9904: 99041P.
    DEARBORN M, ANDERSEN G, MCHARG M G, et al. . FALCONSAT-7: A Deploy Able Solar Telescope Mission. 2012.
    HYDE R A. Eyeglass. 1. Very large aperture diffractive telescopes[J]. Applied Optics, 1999, 38(19): 4198-4212. doi: 10.1364/AO.38.004198
    HYDE R A, DIXIT S N, WEISBERG A H, et al. Eyeglass: a very large aperture diffractive space telescope[J]. Proceedings of SPIE, 2002, 4849: 28-39. doi: 10.1117/12.460420
    HYDE R A, DIXIT S N, WEISBERG A H, et al. . Large aperture diffractive space telescope[J]. Proceedings of SPIE - The International Society for Optical Engineering, 2001.
    HYDE R. Eyeglass large aperture, lightweight space optics FY2000 - FY2002 LDRD strategic initiative[R]. Livermore: Lawrence Livermore National Lab. , 2003.
    陈晓丽, 傅丹鹰. 大口径甚高分辨率空间光学遥感器技术途径探讨[J]. 航天返回与遥感,2003,24(4):19-24. doi: 10.3969/j.issn.1009-8518.2003.04.005

    CHEN X L, FU D Y. Solutions for space optical remote sensor with large aperture and ultrahigh resolution[J]. Spacecraft Recovery &Remote Sensing, 2003, 24(4): 19-24. (in Chinese) doi: 10.3969/j.issn.1009-8518.2003.04.005
    WANG R Q, ZHANG ZH Y, GUO CH L, et al. Effects of fabrication errors on diffraction efficiency for a diffractive membrane[J]. Chinese Optics Letters, 2016, 14(12): 120501. doi: 10.3788/COL201614.120501
    XUE CH X, CUI Q F. Design of multilayer diffractive optical elements with polychromatic integral diffraction efficiency[J] Optics Letters, 2010, 35(7): 986-988.
    刘民哲, 刘华, 许文斌, 等. 用于空间望远镜的膜光子筛[J]. 光学 精密工程,2014,22(8):2127-2134. doi: 10.3788/OPE.20142208.2127

    LIU M ZH, LIU H, XU W B, et al. Membrane photon sieve for space telescope[J]. Optics and Precision Engineering, 2014, 22(8): 2127-2134. (in Chinese) doi: 10.3788/OPE.20142208.2127
    张健, 栗孟娟, 阴刚华, 等. 用于太空望远镜的大口径薄膜菲涅尔衍射元件[J]. 光学 精密工程,2016,24(6):1289-1296. doi: 10.3788/OPE.20162406.1289

    ZHANG J, SU M Y, YIN G H, et al. Large-diameter membrane fresnel diffraction elements for space telescope[J]. Optics and Precision Engineering, 2016, 24(6): 1289-1296. (in Chinese) doi: 10.3788/OPE.20162406.1289
    AGRAWAL B, KUBBY J. Applications of MEMS in segmented mirror space telescopes[J]. Proceedings of SPIE, 2011, 7931: 793102. doi: 10.1117/12.876503
    NICHOLAS G, KEDAR K. Digital Binary MEMS Wavefront Control, US, 8379292-B2[P]. 2013-02-19.
    LIESENER J, HUPFER W J, GEHNER R, et al. Tests on micromirror arrays for adaptive optics[J]. Proceedings of SPIE, 2004, 5553: 319-329. doi: 10.1117/12.558679
    DEKANY R G, MACMARTIN D G, CHANAN G A, et al. Advanced segmented silicon space telescope (ASSIST)[J]. Proceedings of SPIE, 2002, 4849: 103-111. doi: 10.1117/12.460563
    JWST. The James Webb space telescope[J]. Space Science Reviews, 2006.
    DEAN B H, ARONSTEIN D L, SMITH J S, et al. Phase retrieval algorithm for JWST flight and testbed telescope[J]. Proceedings of SPIE, 2006, 6265: 626511. doi: 10.1117/12.673569
    WRIGHT G S, RIEKE G H, COLINA L, et al. The JWST MIRI instrument concept[J]. Proceedings of SPIE, 2004, 5487: 653-663. doi: 10.1117/12.551717
    FREESE K, ILIE C, SPOLYAR D, et al. Supermassive dark stars: detectable in JWST[J]. The Astrophysical Journal, 2010, 716(2): 1397-1407. doi: 10.1088/0004-637X/716/2/1397
    THOMAS E. Towards 1 m Resolution from GEO Executive Summary Report[B]. Thales Alenia Space, Italy, 2010: 1-13.
    BOLCAR M R, FEINBERG L, FRANCE K, et al. Initial Technology Assessment for the Large-Aperture UV-Optical-Infrared (LUVOIR) Mission Concept Study[J]. Proceedings of SPIE, 2016, 9904: 99040J.
    STAHL H P, HOPKINS R C. SLS Launched missions concept studies for LUVOIR mission[J]. Proceedings of SPIE, 2015, 9602: 960206.
    FRANCE K, FLEMING B, WEST G, et al. The LUVOIR ultraviolet multi-object spectrograph (LUMOS): instrument definition and design[J]. Proceedings of SPIE, 2017, 10397: 1039713.
    MENNESSON B, GAUDI S, SEAGER S, et al. The Habitable Exoplanet (HabEx) imaging mission: preliminary science drivers and technical requirements[J]. Proceedings of SPIE, 2016, 9904: 99040L.
    陈晓丽, 杨秉新, 王永辉, 等. 空间可展开光学系统主镜分块方案研究[J]. 航天返回与遥感,2008,29(1):28-33. doi: 10.3969/j.issn.1009-8518.2008.01.006

    CHEN X L, YANG B X, WANG Y H, et al. Segmentation of primary mirror for the space deployable optical system[J]. Spacecraft Recovery &Remote Sensing, 2008, 29(1): 28-33. (in Chinese) doi: 10.3969/j.issn.1009-8518.2008.01.006
    郭崇岭, 陈传志, 陈金宝, 等. 空间光学望远镜在轨建造中的结构机构技术[J]. 宇航学报,2022,43(2):158-166. doi: 10.3873/j.issn.1000-1328.2022.02.003

    GUO C L, CHEN CH ZH, CHEN J B, et al. Structure and mechanism technology of in-space manufacturing space optical telescope[J]. Journal of Astronautics, 2022, 43(2): 158-166. (in Chinese) doi: 10.3873/j.issn.1000-1328.2022.02.003
    金建高, 阮宁娟, 苏云, 等. 空间大型光学遥感器主镜问题解决方法探讨[J]. 空间电子技术,2016,13(2):20-25,43. doi: 10.3969/j.issn.1674-7135.2016.02.005

    JIN J G, RUAN N J, SU Y, et al. Discussion for solution of huge space remote sensor primary mirror issue[J]. Space Electronic Technology, 2016, 13(2): 20-25,43. (in Chinese) doi: 10.3969/j.issn.1674-7135.2016.02.005
    乔彦峰, 刘坤, 段相永. 光学合成孔径成像技术及发展现状[J]. 中国光学与应用光学,2009,2(3):175-183.

    QIAO Y F, LIU S, DUAN X Y. Optical synthetic aperture imaging techniques and development[J]. Chinese Journal of Optics and Applied Optics, 2009, 2(3): 175-183. (in Chinese)
    FAN W J, ZHOU B F, WANG H T, et al. Research of Fourier phase in optical synthetic-aperture imaging technique[J]. Acta Optica Sinica, 2004, 24(3): 408-412.
    LUCKE R L, RICKARD L J. Photon-limited synthetic-aperture imaging for planet surface studies[J]. Applied Optics, 2002, 41(24): 5084-5095. doi: 10.1364/AO.41.005084
    LIU ZH, WANG SH Q, RAO CH H. The Co-phasing detection method for sparse optical synthetic aperture systems[J]. Chinese Physics B, 2012, 21(6): 069501. doi: 10.1088/1674-1056/21/6/069501
    RHODES W T. Digital processing of synthetic aperture optical imagery[J]. Optical Engineering, 1974, 13(3): 267-274.
    WU Y, HUI M, LI W Q, et al. MTF improvement for optical synthetic aperture system via mid-frequency compensation[J]. Optics Express, 2021, 29(7): 10249-10264. doi: 10.1364/OE.420512
    CHUNG S J, MILLER D W, DE WECK O L. ARGOS testbed: study of multidisciplinary challenges of future spaceborne interferometric arrays[J]. Optical Engineering, 2004, 43(9): 2156-2167. doi: 10.1117/1.1779232
    CHUNG S J, LO B D M, MILLER D W, et al. . Multidisciplinary Control of a Sparse Interferometric Array Satellite Testbed[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit, AIAA, 2013.
    LAWSON P R, LAY O P, MARTIN S R, et al. Terrestrial planet finder interferometer 2007—2008 progress and plans[J]. Proceedings of SPIE, 2008, 7013: 70132N.
    LAWSON P R, LAY O P, MARTIN S R, et al. Terrestrial planet finder interferometer: 2006—2007 progress and plans[J]. Proceedings of SPIE, 2007, 6693: 669308. doi: 10.1117/12.734914
    BEICHMAN C, LAWSON P, LAY O, et al. Status of the terrestrial planet finder interferometer (TPF-I)[J]. Proceedings of SPIE, 2006, 6268: 62680S. doi: 10.1117/12.673583
    LAWSON P R, AHMED A, GAPPINGER R O, et al. Terrestrial planet finder interferometer technology status and plans[J]. Proceedings of SPIE, 2006, 6268: 626828. doi: 10.1117/12.670318
    GUARNIERI A M, BOMBACI O, CATALANO T F, et al. ARGOS: A fractioned geosynchronous SAR[J]. Acta Astronautica, 2019, 164: 444-457. doi: 10.1016/j.actaastro.2015.11.022
    STUBBS D, DUNCAN A, PITMAN J T, et al. Multiple instrument distributed aperture sensor (MIDAS) evolved design concept[J]. Proceedings of SPIE, 2004, 5550: 391-398. doi: 10.1117/12.560319
    PITMAN J, DUNCAN A, STUBBS D, et al. Multiple instrument distributed aperture sensor (MIDAS) for remote sensing[J]. Proceedings of SPIE, 2004, 5570: 168-180.
    SCUDERI S, GIULIANI A, PARESCHI G, et al. The ASTRI Mini-Array of Cherenkov telescopes at the Observatorio del Teide[J]. Journal of High Energy Astrophysics, 2022, 35: 52-68. doi: 10.1016/j.jheap.2022.05.001
    WANG D Y. Experimental study on imaging and image restoration of optical sparse aperture systems[J]. Optical Engineering, 2007, 46(10): 103201. doi: 10.1117/1.2799512
    马佳. 欧洲启动达尔文计划搜捕地外生命[J]. 今日科苑,2007(15):12-14.

    MA J. Europe launched the darwin plan to hunt for extraterrestrial life[J]. Modern Science, 2007(15): 12-14. (in Chinese)
    SUZUMOTO R, IKARI S, MIYAMURA N, et al. . Experimental study for synthetic aperture telescope using formation flying micro-satellites for high-frequency and high-resolution GEO remote sensing[C]. 34th Annual Small Satellite Conference. 2020.
    徐伟, 金光, 王家骐. 吉林一号轻型高分辨率遥感卫星光学成像技术[J]. 光学 精密工程,2017,25(8):1969-1978. doi: 10.3788/OPE.20172508.1969

    XU W, JIN G, WANG J Q. Optical imaging technology of JL-1 lightweight high resolution multispectral remote sensing satellite[J]. Optics and Precision Engineering, 2017, 25(8): 1969-1978. (in Chinese) doi: 10.3788/OPE.20172508.1969
    DUNCAN A L, KENDRICK R L. Segmented planar imaging detector for electro-optic reconnaissance: US, 8913859[P]. 2014-12-16.
    DUNCAN A L, KENDRICK R L. Segmented planar imaging detector for electro-optic reconnaissance (SPIDER) Zoom: US, 10012827[P]. 2018-07-03.
    LV G M, LI Q, CHEN Y T, et al. An improved scheme and numerical simulation of segmented planar imaging detector for electro-optical reconnaissance[J]. Optical Review, 2019, 26(6): 664-675. doi: 10.1007/s10043-019-00548-w
    CHU Q H, SHEN Y J, YUAN M, et al. Numerical simulation and optimal design of segmented planar imaging detector for electro-optical reconnaissance[J]. Optics Communications, 2017, 405: 288-296. doi: 10.1016/j.optcom.2017.08.021
    余恭敏, 晋利兵, 周峰, 等. 分块式平面光电侦察成像系统发展概述[J]. 航天返回与遥感,2018,39(5):1-9. doi: 10.3969/j.issn.1009-8518.2018.05.001

    YU G M, JIN L B, ZHOU F, et al. A review on development of segmented planar imaging detector for electro-optical reconnaissance system[J]. Spacecraft Recovery &Remote Sensing, 2018, 39(5): 1-9. (in Chinese) doi: 10.3969/j.issn.1009-8518.2018.05.001
    DESEILLIGNY M P, PAPARODITIS N. A multiresolution and optimization-based image matching approach: an application to surface reconstruction from Spot5-hrs stereo imagery[C]//Proc of the ISPRS Conference Topographic Mapping from Space. US, 2006.
    MURTHY K, SHEARN M, SMILEY B D, et al. SkySat-1: very high-resolution imagery from a small satellite[J]. Proceedings of SPIE, 2014, 9241: 92411E.
    DINARDJ A, ANFLO K, FRIEDHOFF P. On-orbit commissioning of high performance green propulsion (HPGP) in the SkySat constellation[C]. Small Satellite Conference, 2017.
    周宇, 王鹏, 傅丹膺. SkySat卫星的系统创新设计及启示[J]. 航天器工程,2015,24(5):91-98. doi: 10.3969/j.issn.1673-8748.2015.05.014

    ZHOU Y, WANG P, FU D Y, et al. System innovation and enlightenment of SkySat[J]. Spacecraft Engineering, 2015, 24(5): 91-98. (in Chinese) doi: 10.3969/j.issn.1673-8748.2015.05.014
    JOHANSEN K, DUNNE A F, TU Y H, et al. Monitoring coastal water flow dynamics using sub-daily high-resolution SkySat satellite and UAV-based imagery[J]. Water Research, 2022, 219: 118531. doi: 10.1016/j.watres.2022.118531
    李峰, 杨雪, 鲁啸天, 等. 面向星载CMOS相机的超时相工作方式研究[J]. 遥感学报,2021,25(1):514-525.

    LI F, YANG X, LU X T, et al. A new hyper-temporal imaging mode for spaceborne CMOS cameras[J]. Journal of Remote Sensing, 2021, 25(1): 514-525. (in Chinese)
    谢伟, 陈皓, 秦前清. 基于多帧视频序列的盲超分辨率影像重建[J]. 数据采集与处理,2011,26(1):1-7. doi: 10.3969/j.issn.1004-9037.2011.01.001

    XIE W, CHEN H, QIN Q Q. Blind super-resolution image reconstruction based on multiframe video sequence[J]. Journal of Data Acquisition &Processing, 2011, 26(1): 1-7. (in Chinese) doi: 10.3969/j.issn.1004-9037.2011.01.001
    ZHENG G A, HORSTMEYER R, YANG C H E. Wide-field, high-resolution Fourier ptychographic microscopy[J]. Nature Photonics, 2013, 7(9): 739-745. doi: 10.1038/nphoton.2013.187
    DONG S Y, HORSTMEYER R, SHIRADKAR R, et al. Aperture-scanning Fourier ptychography for 3D refocusing and super-resolution macroscopic imaging[J]. Optics Express, 2014, 22(11): 13586-13599. doi: 10.1364/OE.22.013586
    HOLLOWAY J, ASIF M S, SHARMA M K, et al. Toward long-distance subdiffraction imaging using coherent camera arrays[J]. IEEE Transactions on Computational Imaging, 2017, 2(3): 251-265.
    WANG CH Y, HU M H, TAKASHIMA Y, et al. Snapshot ptychography on array cameras[J]. Optics Express, 2022, 30(2): 2585-2598. doi: 10.1364/OE.447499
    WU J CH, YANG F, CAO L C. Resolution enhancement of long-range imaging with sparse apertures[J]. Optics and Lasers in Engineering, 2022, 155: 107068. doi: 10.1016/j.optlaseng.2022.107068
    赵明, 王希明, 张晓慧, 等. 宏观傅里叶叠层超分辨率成像实验研究[J]. 激光与光电子学进展,2019,56(12):101-107.

    ZHAO M, WANG X M, ZHANG X H, et al. Experimental research on macroscopic Fourier ptychography super-resolution imaging[J]. Laser &Optoelectronics Progress, 2019, 56(12): 101-107. (in Chinese)
    相萌. 宏观傅里叶叠层成像的关键问题研究[D]. 西安: 中国科学院大学, 2021.

    XIANG M. Study on key problems of macroscopic Fourier ptychography imaging[D]. Xi’an: University of Chinese Academy of Sciences, 2021. (in Chinese)
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(48)  / Tables(5)

    Article views(146) PDF downloads(172) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint