Turn off MathJax
Article Contents
TIAN Yu-yuan, ZHANG Jia-qi, JIANG Xiao-tong, SUN Mei-yu, SHI Qiang, ZHU Lin-wei. Double doughnut-shaped focal spots with controllable position in axial direction[J]. Chinese Optics. doi: 10.37188/CO.2022-0036
Citation: TIAN Yu-yuan, ZHANG Jia-qi, JIANG Xiao-tong, SUN Mei-yu, SHI Qiang, ZHU Lin-wei. Double doughnut-shaped focal spots with controllable position in axial direction[J]. Chinese Optics. doi: 10.37188/CO.2022-0036

Double doughnut-shaped focal spots with controllable position in axial direction

doi: 10.37188/CO.2022-0036
Funds:  Supported by the National Natural Science Foundation of China (No. 62174073 and No. 61675093); Key Research and Development Project of Shandong Province (No. 2019JZZY020219); Program of Science and Technology Development of Yantai (No. 2020XDRH095).
More Information
  • In order to generate double doughnut-shaped focal spots in adjustable position along axial direction. Based on a formula of annular radius derived from vector diffraction integral, a vortex phase zone plate was designed to produce the double doughnut-shaped focal spots in axial direction. The focusing properties of the modulated vortex phase zone plate was further investigated in tightly focused system. First, integral formulas of linearly and circularly polarized vortex beams were calculated under high NA focusing condition. Then the intensity distributions of linearly and circularly polarized vortex beams in high NA focusing system were simulated by the integral formulas with various axial shifting distances and topological charges. Finally, the corresponding experimental results of linearly and circularly polarized light were also given, utilizing a spatial light modulator loaded on double doughnut-shaped phase patterns. The double doughnut-shaped focal spots with the topological charge of 1 and axial distances of ±10 μm and ±15 μm were produced when the incident light was linear polarization. As well as the double doughnut-shaped focal spots with axial distances of ±20 μm and topological charge of 1−4 were also produced when the incident light was circular polarization. The simulated and experimental results demonstrated that two doughnut-shape focal spots with controllable axial shifting distance and dark spot size could be produced in the tight focusing region of a high NA objective when it modulated by the vortex phase zone plate. This kind of vortex phase zone plate could be applied in the field of optical micromanipulation, two-beam super-resolution nanolithography, and stimulated-emission-depletion fluorescence microscopy (STED).

     

  • loading
  • [1]
    YOUNGWORTH K S, BROWN T G. Focusing of high numerical aperture cylindrical-vector beams[J]. Optics Express, 2000, 7(2): 77-87. doi: 10.1364/OE.7.000077
    [2]
    王思聪, 李向平. 紧聚焦轴对称矢量光场波前调控及应用[J]. 中国光学,2016,9(2):185-202. doi: 10.3788/co.20160902.0185

    WANG S C, LI X P. Wavefront manipulation of tightly focused cylindrical vector beams and its applications[J]. Chinese Optics, 2016, 9(2): 185-202. (in Chinese) doi: 10.3788/co.20160902.0185
    [3]
    ZHOU ZH H, TAN Q F, JIN G F. Multiple 3D optical trapping using higher polarization order axially-symmetric polarized beams[J]. Chinese Optics, 2010, 3(1): 52-56.
    [4]
    GAN Z S, CAO Y Y, EVANS R A, et al. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size[J]. Nature Communications, 2013, 4: 2061. doi: 10.1038/ncomms3061
    [5]
    HELL S W, WICHMANN J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy[J]. Optics Letters, 1994, 19(11): 780-782. doi: 10.1364/OL.19.000780
    [6]
    KOTLYAR V V, ALMAZOV A A, KHONINA S N, et al. Generation of phase singularity through diffracting a plane or Gaussian beam by a spiral phase plate[J]. Journal of the Optical Society of America A, 2005, 22(5): 849-861. doi: 10.1364/JOSAA.22.000849
    [7]
    KHONINA S N, USTINOV A V, LOGACHEV V I, et al. Properties of vortex light fields generated by generalized spiral phase plates[J]. Physical Review A, 2020, 101(4): 043829. doi: 10.1103/PhysRevA.101.043829
    [8]
    KHONINA S N, PODLIPNOV V V, KARPEEV S V, et al. Spectral control of the orbital angular momentum of a laser beam based on 3D properties of spiral phase plates fabricated for an infrared wavelength[J]. Optics Express, 2020, 28(12): 18407-18417. doi: 10.1364/OE.396199
    [9]
    高伟建, 王文宝, 朱士群. 利用位错光栅实现中空光束[J]. 光学学报,1998,18(10):1467-1469. doi: 10.3321/j.issn:0253-2239.1998.10.039

    GAO W J, WANG W B, ZHU SH Q. Obtaining hollow beam using dislocation grating[J]. Acta Optica Sinica, 1998, 18(10): 1467-1469. (in Chinese) doi: 10.3321/j.issn:0253-2239.1998.10.039
    [10]
    张淑芬, 姜珊, 董磊, 等. 基于衍射光栅的高精度干涉星敏感器的理论分析[J]. 中国光学,2021,14(6):1368-1377. doi: 10.37188/CO.2021-0051

    ZHANG SH F, JIANG SH, DONG L, et al. High accuracy interferometric star tracker based on diffraction grating[J]. Chinese Optics, 2021, 14(6): 1368-1377. (in Chinese) doi: 10.37188/CO.2021-0051
    [11]
    谭志华, 翁晓羽, 隋国荣, 等. 基于双环形旋涡相位调制的多焦点产生[J]. 光学仪器,2013,35(5):46-50. doi: 10.3969/j.issn.1005-5630.2013.05.011

    TAN ZH H, WENG X Y, SUI G R, et al. Multi-focal spots formed by the modulation of double ring-shape vortex phase plate[J]. Optical Instruments, 2013, 35(5): 46-50. (in Chinese) doi: 10.3969/j.issn.1005-5630.2013.05.011
    [12]
    蔡志华, 王孝坤, 胡海翔, 等. 计算全息法标定单光楔补偿检测系统误差[J]. 中国光学,2022,15(1):90-100. doi: 10.37188/CO.EN.2021-0004

    CAI ZH H, WANG X K, HU H X, et al. Calibration of single optical wedge compensation test system error by computer generation hologram[J]. Chinese Optics, 2022, 15(1): 90-100. (in Chinese) doi: 10.37188/CO.EN.2021-0004
    [13]
    HAN J, INTARAVANNE Y, MA A N, et al. Optical metasurfaces for generation and superposition of optical ring vortex beams[J]. Laser &Photonics Reviews, 2020, 14(9): 2000146.
    [14]
    李昊, 胡德骄, 秦飞, 等. 原子层厚度超表面光场调控原理及应用[J]. 中国光学,2021,14(4):851-866. doi: 10.37188/CO.2021-0069

    LI H, HU D J, QIN F, et al. Principle and application of metasurface optical field modulation of atomic layer thickness[J]. Chinese Optics, 2021, 14(4): 851-866. (in Chinese) doi: 10.37188/CO.2021-0069
    [15]
    YU J J, ZHOU CH H, JIA W, et al. Circular Dammann grating under high numerical aperture focusing[J]. Applied Optics, 2012, 51(7): 994-999. doi: 10.1364/AO.51.000994
    [16]
    YU J J, ZHOU CH H, JIA W, et al. Generation of tightly focused twin Bessel beams using circular Dammann gratings under radial polarization incidence[J]. Optics Communications, 2012, 285(21-22): 4166-4170. doi: 10.1016/j.optcom.2012.06.079
    [17]
    XU L Q, WANG C W, QI X B, et al. Femtosecond laser direct writing continuous phase vortex gratings with proportionally distributed diffraction energy[J]. Applied Physics Letters, 2021, 119(13): 131101. doi: 10.1063/5.0061590
    [18]
    YU J J, ZHOU CH H, JIA W, et al. Generation of dipole vortex array using spiral Dammann zone plates[J]. Applied Optics, 2012, 51(28): 6799-6804. doi: 10.1364/AO.51.006799
    [19]
    YU J J, ZHOU CH H, JIA W, et al. Three-dimensional Dammann vortex array with tunable topological charge[J]. Applied Optics, 2012, 51(13): 2485-2490. doi: 10.1364/AO.51.002485
    [20]
    LI M Y, LI W L, LI H Y, et al. Controllable design of super-oscillatory lenses with multiple sub-diffraction-limit foci[J]. Scientific Reports, 2017, 7(1): 1335. doi: 10.1038/s41598-017-01492-y
    [21]
    WU ZH X, DENG H, LI X X, et al. Generation of subdiffraction longitudinal bifoci by shaping a radially polarized wave[J]. Applied Optics, 2020, 59(26): 7841-7845. doi: 10.1364/AO.397584
    [22]
    BADLOE T, KIM I, KIM Y, et al. Electrically tunable bifocal Metalens with diffraction-limited focusing and imaging at visible wavelengths[J]. Advanced Science, 2021, 8(21): 2102646. doi: 10.1002/advs.202102646
    [23]
    SABATYAN A, EBRAHIMI H. Modified photon sieve as a high-performance bifocal and trifocal diffractive optical element[J]. Journal of the Optical Society of America A, 2018, 35(10): 1692-1700. doi: 10.1364/JOSAA.35.001692
    [24]
    冀胜哲, 朱林伟, 孙美玉, 等. 紧聚焦条件下的轴向双焦点波带片[J]. 光学学报,2015,35(3):0305003. doi: 10.3788/AOS201535.0305003

    JI SH ZH, ZHU L W, SUN M Y, et al. Axial two focus zone plate under tight foucsing conditions[J]. Acta Optica Sinica, 2015, 35(3): 0305003. (in Chinese) doi: 10.3788/AOS201535.0305003
    [25]
    CHEN Y Y, LI J S, ZHANG H R, et al. Focusing and propagation properties of Bessel–Gaussian beam with a power-order mixing helical–conical phase wavefront[J]. Applied Optics, 2021, 60(4): 929-934. doi: 10.1364/AO.414356
    [26]
    HUI Y F, CUI ZH W, LI Y X, et al. Propagation and dynamical characteristics of a Bessel–Gaussian beam in a chiral medium[J]. Journal of the Optical Society of America A, 2018, 35(8): 1299-1305. doi: 10.1364/JOSAA.35.001299
    [27]
    李晨昊, MAIER S A, 任浩然. 纳米光子学中的光学涡旋[J]. 中国光学,2021,14(4):792-811. doi: 10.37188/CO.2021-0066

    LI CH H, MAIER S A, REN H R. Optical vortices in nanophotonics[J]. Chinese Optics, 2021, 14(4): 792-811. (in Chinese) doi: 10.37188/CO.2021-0066
    [28]
    DAI Y Y, ANTONELLO J, BOOTH M J. Calibration of a phase-only spatial light modulator for both phase and retardance modulation[J]. Optics Express, 2019, 27(13): 17912-17926. doi: 10.1364/OE.27.017912
    [29]
    LI SH Q, XU X W, VEETIL R M, et al. Phase-only transmissive spatial light modulator based on tunable dielectric metasurface[J]. Science, 2019, 364(6445): 1087-1090. doi: 10.1126/science.aaw6747
    [30]
    LIU Q, LIU T, YANG SH M, et al. Validation of vectorial theories for the focusing of high numerical aperture Fresnel zone plates[J]. Optics Communications, 2018, 429: 119-126. doi: 10.1016/j.optcom.2018.08.010
    [31]
    ZHUANG J L, ZHANG L P, DENG D M. Tight-focusing properties of linearly polarized circular Airy Gaussian vortex beam[J]. Optics Letters, 2020, 45(2): 296-299. doi: 10.1364/OL.45.000296
    [32]
    HU Y F, LIU X, JIN M K, et al. Dielectric metasurface zone plate for the generation of focusing vortex beams[J]. PhotoniX, 2021, 2(1): 10. doi: 10.1186/s43074-021-00035-z
    [33]
    CHEN L X. Quantum discord of thermal two-photon orbital angular momentum state: mimicking teleportation to transmit an image[J]. Light:Science &Applications, 2021, 10(1): 148.
    [34]
    胡孔云, 肖光宗, 张莹, 等. 采用超连续谱激光的双光束光纤光阱实验[J]. 中国光学,2017,10(3):370-375. doi: 10.3788/co.20171003.0370

    HU K Y, XIAO G Z, ZHANG Y, et al. Double-beam fiber optical trap experiments based on supercontinuum laser[J]. Chinese Optics, 2017, 10(3): 370-375. (in Chinese) doi: 10.3788/co.20171003.0370
    [35]
    明昕宇, 国旗, 薛兆康, 等. 飞秒激光刻写低温度灵敏度的细芯长周期光栅[J]. 中国光学,2020,13(4):737-744. doi: 10.37188/CO.2020-0015

    MING X Y, GUO Q, XUE ZH K, et al. A femtosecond laser-inscribed fine-core long-period grating with low temperature sensitivity[J]. Chinese Optics, 2020, 13(4): 737-744. (in Chinese) doi: 10.37188/CO.2020-0015
    [36]
    WANG S C, WEI CH, FENG Y H, et al. Dual-shot dynamics and ultimate frequency of all-optical magnetic recording on GdFeCo[J]. Light:Science &Applications, 2021, 10(1): 8.
    [37]
    RICHARDS B, WOLF E. Electromagnetic diffraction in optical systems, II. Structure of the image field in an aplanatic system[J]. Proceedings of the Royal Society A:Mathematical,Physical and Engineering Sciences, 1959, 253(1274): 358-379.
    [38]
    WOLF E. Electromagnetic diffraction in optical systems I. An integral representation of the image field[J]. Proceedings of the Royal Society A:Mathematical,Physical and Engineering Sciences, 1959, 253(1274): 349-357.
    [39]
    ZHAN Q W. Properties of circularly polarized vortex beams[J]. Optics Letters, 2006, 31(7): 867-869. doi: 10.1364/OL.31.000867
    [40]
    曹耀宇, 谢飞, 张鹏达, 等. 双光束超分辨激光直写纳米加工技术[J]. 光电工程,2017,44(12):1133-1145.

    CAO Y Y, XIE F, ZHANG P D, et al. Dual-beam super-resolution direct laser writing nanofabrication technology[J]. Opto-Electronic Engineering, 2017, 44(12): 1133-1145. (in Chinese)
    [41]
    LI X P, CAO Y Y, TIAN N, et al. Multifocal optical nanoscopy for big data recording at 30 TB capacity and gigabits/second data rate[J]. Optica, 2015, 2(6): 567-570. doi: 10.1364/OPTICA.2.000567
    [42]
    ZHU L W, CAO Y Y, CHEN Q Q, et al. Near-perfect fidelity polarization-encoded multilayer optical data storage based on aligned gold nanorods[J]. Opto-Electronic Advances, 2021, 4(11): 210002. doi: 10.29026/oea.2021.210002
    [43]
    GAO Y F, XIA X Y, LIU L N, et al. Axial gradient excitation accelerates volumetric imaging of two-photon microscopy[J]. Photonics Research, 2022, 10(3): 687-696. doi: 10.1364/PRJ.441778
    [44]
    COMSTOCK M J, WHITLEY K D, JIA H F, et al. Direct observation of structure-function relationship in a nucleic acid-processing enzyme[J]. Science, 2015, 348(6232): 352-354. doi: 10.1126/science.aaa0130
    [45]
    MUDRY E, LE MOAL E, FERRAND P, et al. Isotropic diffraction-limited focusing using a single objective lens[J]. Physical Review Letters, 2010, 105(20): 203903. doi: 10.1103/PhysRevLett.105.203903
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article views(88) PDF downloads(152) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return