Volume 14 Issue 6
Nov.  2021
Turn off MathJax
Article Contents
CHEN Jie, TONG Yi-cheng, XIAO Da, ZHANG Kai, LIU Chong, LIU Dong. Retrieval methods for extinction-to-backscatter ratio of atmospheric aerosols[J]. Chinese Optics, 2021, 14(6): 1305-1316. doi: 10.37188/CO.2021-0135
Citation: CHEN Jie, TONG Yi-cheng, XIAO Da, ZHANG Kai, LIU Chong, LIU Dong. Retrieval methods for extinction-to-backscatter ratio of atmospheric aerosols[J]. Chinese Optics, 2021, 14(6): 1305-1316. doi: 10.37188/CO.2021-0135

Retrieval methods for extinction-to-backscatter ratio of atmospheric aerosols

doi: 10.37188/CO.2021-0135
Funds:  Supported by National Key Research and Development Program of China (No. 2016YFC1400900); National Natural Science Foundation of China (No. 41775023); Excellent Young Scientist Program of Zhejiang Provincial Natural Science Foundation of China (No. LR19D050001); Fundamental Research Funds for the Central Universities (No. 2021XZZX019); State Key Laboratory of Modern Optical Instrumentation Innovation Program (No. MOI2021ZD01)
More Information
  • Corresponding author: liudongopt@zju.edu.cn
  • Received Date: 2021-07-05
  • Rev Recd Date: 2021-08-13
  • Available Online: 2021-09-10
  • Publish Date: 2021-11-19
  • The extinction-to-backscatter ratio is an important optical parameter of aerosols, which is dependent on the type of aerosol. In addition, it is an important source of error in the retrieval of Mie-scattering Lidar. Nowadays, with the rapid development of Lidar in atmospheric aerosol detection, it has become a focus of research. Therefore, it is of great significance to investigate the retrieval methods of the extinction-to-backscatter ratio for aerosol detection and research. According to the choice of instruments and the retrieval principles, this paper summarizes various methods and compares them in terms of optical and microphysical properties. Among them, the light scattering model method, passive optical remote sensing method and Lidar method are closely related and widely used, which provide important support for the detection and research of atmospheric aerosols. This paper mainly introduces these three kinds of relatively mainstream retrieval methods and summarizes the development of related methods. The application, advantages and disadvantages of these methods are analyzed, and their future trends of development are forecasted.
  • loading
  • [1]
    陈良富, 李莘莘, 陶金花, 等. 气溶胶遥感定量反演研究与应用[M]. 北京: 科学出版社, 2011.

    CHEN L F, LI SH SH, TAO J H, et al.. Research and Application of Aerosol Remote Sensing Quantitative Inversion[M]. Beijing: Science Press, 2001. (in Chinese)
    [2]
    EVANS B T N. Sensitivity of the backscatter/extinction ratio to changes in aerosol properties: implications for lidar[J]. Applied Optics, 1988, 27(15): 3299-3305. doi: 10.1364/AO.27.003299
    [3]
    FERNALD F G. Analysis of atmospheric lidar observations: some comments[J]. Applied Optics, 1984, 23(5): 652-653. doi: 10.1364/AO.23.000652
    [4]
    KIM M H, OMAR A H, TACKETT J L, et al. The CALIPSO version 4 automated aerosol classification and lidar ratio selection algorithm[J]. Atmospheric Measurement Techniques, 2018, 11(11): 6107-6135. doi: 10.5194/amt-11-6107-2018
    [5]
    SALGUEIRO V, COSTA M J, GUERRERO-RASCADO J L, et al. Characterization of forest fire and Saharan desert dust aerosols over south-western Europe using a multi-wavelength Raman lidar and Sun-photometer[J]. Atmospheric Environment, 2021, 252: 118346. doi: 10.1016/j.atmosenv.2021.118346
    [6]
    ZHAO G, ZHAO CH SH, KUANG Y, et al. Impact of aerosol hygroscopic growth on retrieving aerosol extinction coefficient profiles from elastic-backscatter lidar signals[J]. Atmospheric Chemistry and Physics, 2017, 17(19): 12133-12143. doi: 10.5194/acp-17-12133-2017
    [7]
    DIONISI D, BARNABA F, DIÉMOZ H, et al. A multiwavelength numerical model in support of quantitative retrievals of aerosol properties from automated lidar ceilometers and test applications for AOT and PM10 estimation[J]. Atmospheric Measurement Techniques, 2018, 11(11): 6013-6042. doi: 10.5194/amt-11-6013-2018
    [8]
    GASTEIGER J, WIEGNER M. MOPSMAP v1.0: a versatile tool for the modeling of aerosol optical properties[J]. Geoscientific Model Development, 2018, 11(7): 2739-2762. doi: 10.5194/gmd-11-2739-2018
    [9]
    DOHERTY S J, ANDERSON T L, CHARLSON R J. Measurement of the lidar ratio for atmospheric aerosols with a 180° backscatter nephelometer[J]. Applied Optics, 1999, 38(9): 1823-1832. doi: 10.1364/AO.38.001823
    [10]
    童奕澄, 童学东, 张凯, 等. 偏振激光雷达增益比定标方法对比研究[J]. 中国光学,2021,14(3):685-703. doi: 10.37188/CO.2020-0136

    TONG Y CH, TONG X D, ZHANG K, et al. Polarization lidar gain ratio calibration method: a comparison[J]. Chinese Optics, 2021, 14(3): 685-703. (in Chinese) doi: 10.37188/CO.2020-0136
    [11]
    曲艺. 大气光学遥感监测技术现状与发展趋势[J]. 中国光学,2013,6(6):834-840.

    QU Y. Technical status and development tendency of atmosphere optical remote and monitoring[J]. Chinese Optics, 2013, 6(6): 834-840. (in Chinese)
    [12]
    DUBOVIK O, SINYUK A, LAPYONOK T, et al. Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust[J]. Journal of Geophysical Research:Atmospheres, 2006, 111(D11): D11208. doi: 10.1029/2005JD006619
    [13]
    YANG P, KATTAWAR G W, LIOU K N, et al. Comparison of Cartesian grid configurations for application of the finite-difference time-domain method to electromagnetic scattering by dielectric particles[J]. Applied Optics, 2004, 43(23): 4611-4624. doi: 10.1364/AO.43.004611
    [14]
    张朝阳, 苏林, 陈良富. 中国典型地区气溶胶激光雷达比反演与分析[J]. 中国激光,2013,40(5):0513002. doi: 10.3788/CJL201340.0513002

    ZHANG ZH Y, SU L, CHEN L F. Retrieval and analysis of aerosol lidar ratio at several typical regions in China[J]. Chinese Journal of Lasers, 2013, 40(5): 0513002. (in Chinese) doi: 10.3788/CJL201340.0513002
    [15]
    WU M X, LIU X H, YU H B, et al. Understanding processes that control dust spatial distributions with global climate models and satellite observations[J]. Atmospheric Chemistry and Physics, 2020, 20(22): 13835-13855. doi: 10.5194/acp-20-13835-2020
    [16]
    陶金花, 李小英, 王子峰, 等. 大气遥感定量反演算法与系统[M]. 北京: 科学出版社, 2014.

    TAO J H, LI X Y, WANG Z F, et al.. Atmospheric Remote Sensing Quantitative Inversion Algorithm and System[M]. Beijing: Science Press, 2014. (in Chinese)
    [17]
    李正强, 谢一凇, 洪津, 等. 星载对地观测偏振传感器及其大气遥感应用[J]. 大气与环境光学学报,2019,14(1):2-17.

    LI ZH Q, XIE Y S, HONG J, et al. Polarimetric satellite sensors for earth observation and applications in atmospheric remote sensing[J]. Journal of Atmospheric and Environmental Optics, 2019, 14(1): 2-17. (in Chinese)
    [18]
    马小雨, 陈正华, 宿鑫, 等. GF-4增强型地表反射率库支持法的气溶胶光学厚度反演[J]. 遥感学报,2020,24(5):578-595.

    MA X Y, CHEN ZH H, SU X, et al. GF-4 aerosol retrieval study of enhanced surface reflectance library support algorithm[J]. Journal of Remote Sensing, 2020, 24(5): 578-595. (in Chinese)
    [19]
    CHEN X F, DE LEEUW G, AROLA A. et al. Joint retrieval of the aerosol fine mode fraction and optical depth using MODIS spectral reflectance over northern and eastern China: artificial neural network method[J]. Remote Sensing of Environment, 2020, 249: 112006. doi: 10.1016/j.rse.2020.112006
    [20]
    BRÉON F M. Aerosol extinction-to-backscatter ratio derived from passive satellite measurements[J]. Atmospheric Chemistry and Physics, 2013, 13(17): 8947-8954. doi: 10.5194/acp-13-8947-2013
    [21]
    COMERÓN A, MUÑOZ-PORCAR C, ROCADENBOSCH F, et al. Current research in lidar technology used for the remote sensing of atmospheric aerosols[J]. Sensors, 2017, 17(6): 1450. doi: 10.3390/s17061450
    [22]
    田晓敏, 刘东, 徐继伟, 等. 大气探测激光雷达技术综述[J]. 大气与环境光学学报,2018,13(5):321-341.

    TIAN X M, LIU D, XU J W, et al. Review of lidar technology for atmosphere monitoring[J]. Journal of Atmospheric and Environmental Optics, 2018, 13(5): 321-341. (in Chinese)
    [23]
    刘东, 刘群, 白剑, 等. 星载激光雷达CALIOP数据处理算法概述[J]. 红外与激光工程,2017,46(12):1202001. doi: 10.3788/IRLA201746.1202001

    LIU D, LIU Q, BAI J, et al. Data processing algorithms of the space-borne lidar CALIOP: a review[J]. Infrared and Laser Engineering, 2017, 46(12): 1202001. (in Chinese) doi: 10.3788/IRLA201746.1202001
    [24]
    JOSSET D, ROGERS R, PELON J, et al. CALIPSO lidar ratio retrieval over the ocean[J]. Optics Express, 2011, 19(19): 18696-18706. doi: 10.1364/OE.19.018696
    [25]
    SU J, MCCORMICK M P. Using multi-wavelength Mie-Raman lidar to measure low-level cloud properties[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 237: 106610. doi: 10.1016/j.jqsrt.2019.106610
    [26]
    BOVCHALIUK V, GOLOUB P, PODVIN T, et al. Comparison of aerosol properties retrieved using GARRLiC, LIRIC, and Raman algorithms applied to multi-wavelength lidar and sun/sky-photometer data[J]. Atmospheric Measurement Techniques, 2016, 9(7): 3391-3405. doi: 10.5194/amt-9-3391-2016
    [27]
    CÓRDOBA-JABONERO C, LOPES F J S, LANDULFO E, et al. Diversity on subtropical and polar cirrus clouds properties as derived from both ground-based lidars and CALIPSO/CALIOP measurements[J]. Atmospheric Research, 2017, 183: 151-165. doi: 10.1016/j.atmosres.2016.08.015
    [28]
    华雯丽, 韩颖, 乔瀚洋, 等. 敦煌沙尘气溶胶质量浓度垂直特征个例分析[J]. 高原气象,2018,37(5):1428-1439.

    HUA W L, HAN Y, QIAO H Y, et al. Profiling of dust aerosol mass concentration over Dunhuang: case studies[J]. Plateau Meteorology, 2018, 37(5): 1428-1439. (in Chinese)
    [29]
    TAO Z M, LIU ZH Y, WU D, et al. Determination of aerosol extinction-to-backscatter ratios from simultaneous ground-based and spaceborne lidar measurements[J]. Optics Letters, 2008, 33(24): 2986-2988. doi: 10.1364/OL.33.002986
    [30]
    SASANO Y, BROWELL E V. Light scattering characteristics of various aerosol types derived from multiple wavelength lidar observations[J]. Applied Optics, 1989, 28(9): 1670-1679. doi: 10.1364/AO.28.001670
    [31]
    KIM D, CHA H. Rotational Raman lidar for obtaining aerosol scattering coefficients[J]. Optics Letters, 2005, 30(13): 1728-1730. doi: 10.1364/OL.30.001728
    [32]
    ANSMANN A, WANDINGER U, RIEBESELL M, et al. Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar[J]. Applied Optics, 1992, 31(33): 7113-7131. doi: 10.1364/AO.31.007113
    [33]
    POVEY A C, GRAINGER R G, PETERS D M, et al. Retrieval of aerosol backscatter, extinction, and lidar ratio from Raman lidar with optimal estimation[J]. Atmospheric Measurement Techniques, 2014, 7(3): 757-776. doi: 10.5194/amt-7-757-2014
    [34]
    LI S W, DI H G, WANG Q Y, et al. Retrieval of the aerosol extinction coefficient of 1064 nm based on high-spectral-resolution lidar[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 256: 107298. doi: 10.1016/j.jqsrt.2020.107298
    [35]
    刘东, 周雨迪, 朱小磊, 等. 大气海洋高光谱分辨率激光雷达鉴频特性研究[J]. 大气与环境光学学报,2020,15(1):48-54.

    LIU D, ZHOU Y D, ZHU X L, et al. Investigation on discrimination characteristics of atmospheric and oceanic high-spectral-resolution lidar[J]. Journal of Atmospheric and Environmental Optics, 2020, 15(1): 48-54. (in Chinese)
    [36]
    戎宇航, 沈雪, 王南朝, 等. 双波长高光谱分辨率激光雷达光谱鉴频器设计[J]. 光学学报,2021,41(4):0401001. doi: 10.3788/AOS202141.0401001

    RONG Y H, SHEN X, WANG N CH, et al. Design of dual-wavelength spectral discriminator for high-spectral-resolution lidar[J]. Acta Optica Sinica, 2021, 41(4): 0401001. (in Chinese) doi: 10.3788/AOS202141.0401001
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article views (356) PDF downloads(83) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return