Volume 14 Issue 6
Nov.  2021
Turn off MathJax
Article Contents
CHEN Jie, TONG Yi-cheng, XIAO Da, ZHANG Kai, LIU Chong, LIU Dong. Retrieval methods for extinction-to-backscatter ratio of atmospheric aerosols[J]. Chinese Optics, 2021, 14(6): 1305-1316. doi: 10.37188/CO.2021-0135
Citation: CHEN Jie, TONG Yi-cheng, XIAO Da, ZHANG Kai, LIU Chong, LIU Dong. Retrieval methods for extinction-to-backscatter ratio of atmospheric aerosols[J]. Chinese Optics, 2021, 14(6): 1305-1316. doi: 10.37188/CO.2021-0135

Retrieval methods for extinction-to-backscatter ratio of atmospheric aerosols

doi: 10.37188/CO.2021-0135
Funds:  Supported by National Key Research and Development Program of China (No. 2016YFC1400900); National Natural Science Foundation of China (No. 41775023); Excellent Young Scientist Program of Zhejiang Provincial Natural Science Foundation of China (No. LR19D050001); Fundamental Research Funds for the Central Universities (No. 2021XZZX019); State Key Laboratory of Modern Optical Instrumentation Innovation Program (No. MOI2021ZD01)
More Information
  • Corresponding author: liudongopt@zju.edu.cn
  • Received Date: 05 Jul 2021
  • Rev Recd Date: 13 Aug 2021
  • Available Online: 10 Sep 2021
  • Publish Date: 19 Nov 2021
  • The extinction-to-backscatter ratio is an important optical parameter of aerosols, which is dependent on the type of aerosol. In addition, it is an important source of error in the retrieval of Mie-scattering Lidar. Nowadays, with the rapid development of Lidar in atmospheric aerosol detection, it has become a focus of research. Therefore, it is of great significance to investigate the retrieval methods of the extinction-to-backscatter ratio for aerosol detection and research. According to the choice of instruments and the retrieval principles, this paper summarizes various methods and compares them in terms of optical and microphysical properties. Among them, the light scattering model method, passive optical remote sensing method and Lidar method are closely related and widely used, which provide important support for the detection and research of atmospheric aerosols. This paper mainly introduces these three kinds of relatively mainstream retrieval methods and summarizes the development of related methods. The application, advantages and disadvantages of these methods are analyzed, and their future trends of development are forecasted.


  • loading
  • [1]
    陈良富, 李莘莘, 陶金花, 等. 气溶胶遥感定量反演研究与应用[M]. 北京: 科学出版社, 2011.

    CHEN L F, LI SH SH, TAO J H, et al.. Research and Application of Aerosol Remote Sensing Quantitative Inversion[M]. Beijing: Science Press, 2001. (in Chinese)
    EVANS B T N. Sensitivity of the backscatter/extinction ratio to changes in aerosol properties: implications for lidar[J]. Applied Optics, 1988, 27(15): 3299-3305. doi: 10.1364/AO.27.003299
    FERNALD F G. Analysis of atmospheric lidar observations: some comments[J]. Applied Optics, 1984, 23(5): 652-653. doi: 10.1364/AO.23.000652
    KIM M H, OMAR A H, TACKETT J L, et al. The CALIPSO version 4 automated aerosol classification and lidar ratio selection algorithm[J]. Atmospheric Measurement Techniques, 2018, 11(11): 6107-6135. doi: 10.5194/amt-11-6107-2018
    SALGUEIRO V, COSTA M J, GUERRERO-RASCADO J L, et al. Characterization of forest fire and Saharan desert dust aerosols over south-western Europe using a multi-wavelength Raman lidar and Sun-photometer[J]. Atmospheric Environment, 2021, 252: 118346. doi: 10.1016/j.atmosenv.2021.118346
    ZHAO G, ZHAO CH SH, KUANG Y, et al. Impact of aerosol hygroscopic growth on retrieving aerosol extinction coefficient profiles from elastic-backscatter lidar signals[J]. Atmospheric Chemistry and Physics, 2017, 17(19): 12133-12143. doi: 10.5194/acp-17-12133-2017
    DIONISI D, BARNABA F, DIÉMOZ H, et al. A multiwavelength numerical model in support of quantitative retrievals of aerosol properties from automated lidar ceilometers and test applications for AOT and PM10 estimation[J]. Atmospheric Measurement Techniques, 2018, 11(11): 6013-6042. doi: 10.5194/amt-11-6013-2018
    GASTEIGER J, WIEGNER M. MOPSMAP v1.0: a versatile tool for the modeling of aerosol optical properties[J]. Geoscientific Model Development, 2018, 11(7): 2739-2762. doi: 10.5194/gmd-11-2739-2018
    DOHERTY S J, ANDERSON T L, CHARLSON R J. Measurement of the lidar ratio for atmospheric aerosols with a 180° backscatter nephelometer[J]. Applied Optics, 1999, 38(9): 1823-1832. doi: 10.1364/AO.38.001823
    童奕澄, 童学东, 张凯, 等. 偏振激光雷达增益比定标方法对比研究[J]. 中国光学,2021,14(3):685-703. doi: 10.37188/CO.2020-0136

    TONG Y CH, TONG X D, ZHANG K, et al. Polarization lidar gain ratio calibration method: a comparison[J]. Chinese Optics, 2021, 14(3): 685-703. (in Chinese) doi: 10.37188/CO.2020-0136
    曲艺. 大气光学遥感监测技术现状与发展趋势[J]. 中国光学,2013,6(6):834-840.

    QU Y. Technical status and development tendency of atmosphere optical remote and monitoring[J]. Chinese Optics, 2013, 6(6): 834-840. (in Chinese)
    DUBOVIK O, SINYUK A, LAPYONOK T, et al. Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust[J]. Journal of Geophysical Research:Atmospheres, 2006, 111(D11): D11208. doi: 10.1029/2005JD006619
    YANG P, KATTAWAR G W, LIOU K N, et al. Comparison of Cartesian grid configurations for application of the finite-difference time-domain method to electromagnetic scattering by dielectric particles[J]. Applied Optics, 2004, 43(23): 4611-4624. doi: 10.1364/AO.43.004611
    张朝阳, 苏林, 陈良富. 中国典型地区气溶胶激光雷达比反演与分析[J]. 中国激光,2013,40(5):0513002. doi: 10.3788/CJL201340.0513002

    ZHANG ZH Y, SU L, CHEN L F. Retrieval and analysis of aerosol lidar ratio at several typical regions in China[J]. Chinese Journal of Lasers, 2013, 40(5): 0513002. (in Chinese) doi: 10.3788/CJL201340.0513002
    WU M X, LIU X H, YU H B, et al. Understanding processes that control dust spatial distributions with global climate models and satellite observations[J]. Atmospheric Chemistry and Physics, 2020, 20(22): 13835-13855. doi: 10.5194/acp-20-13835-2020
    陶金花, 李小英, 王子峰, 等. 大气遥感定量反演算法与系统[M]. 北京: 科学出版社, 2014.

    TAO J H, LI X Y, WANG Z F, et al.. Atmospheric Remote Sensing Quantitative Inversion Algorithm and System[M]. Beijing: Science Press, 2014. (in Chinese)
    李正强, 谢一凇, 洪津, 等. 星载对地观测偏振传感器及其大气遥感应用[J]. 大气与环境光学学报,2019,14(1):2-17.

    LI ZH Q, XIE Y S, HONG J, et al. Polarimetric satellite sensors for earth observation and applications in atmospheric remote sensing[J]. Journal of Atmospheric and Environmental Optics, 2019, 14(1): 2-17. (in Chinese)
    马小雨, 陈正华, 宿鑫, 等. GF-4增强型地表反射率库支持法的气溶胶光学厚度反演[J]. 遥感学报,2020,24(5):578-595.

    MA X Y, CHEN ZH H, SU X, et al. GF-4 aerosol retrieval study of enhanced surface reflectance library support algorithm[J]. Journal of Remote Sensing, 2020, 24(5): 578-595. (in Chinese)
    CHEN X F, DE LEEUW G, AROLA A. et al. Joint retrieval of the aerosol fine mode fraction and optical depth using MODIS spectral reflectance over northern and eastern China: artificial neural network method[J]. Remote Sensing of Environment, 2020, 249: 112006. doi: 10.1016/j.rse.2020.112006
    BRÉON F M. Aerosol extinction-to-backscatter ratio derived from passive satellite measurements[J]. Atmospheric Chemistry and Physics, 2013, 13(17): 8947-8954. doi: 10.5194/acp-13-8947-2013
    COMERÓN A, MUÑOZ-PORCAR C, ROCADENBOSCH F, et al. Current research in lidar technology used for the remote sensing of atmospheric aerosols[J]. Sensors, 2017, 17(6): 1450. doi: 10.3390/s17061450
    田晓敏, 刘东, 徐继伟, 等. 大气探测激光雷达技术综述[J]. 大气与环境光学学报,2018,13(5):321-341.

    TIAN X M, LIU D, XU J W, et al. Review of lidar technology for atmosphere monitoring[J]. Journal of Atmospheric and Environmental Optics, 2018, 13(5): 321-341. (in Chinese)
    刘东, 刘群, 白剑, 等. 星载激光雷达CALIOP数据处理算法概述[J]. 红外与激光工程,2017,46(12):1202001. doi: 10.3788/IRLA201746.1202001

    LIU D, LIU Q, BAI J, et al. Data processing algorithms of the space-borne lidar CALIOP: a review[J]. Infrared and Laser Engineering, 2017, 46(12): 1202001. (in Chinese) doi: 10.3788/IRLA201746.1202001
    JOSSET D, ROGERS R, PELON J, et al. CALIPSO lidar ratio retrieval over the ocean[J]. Optics Express, 2011, 19(19): 18696-18706. doi: 10.1364/OE.19.018696
    SU J, MCCORMICK M P. Using multi-wavelength Mie-Raman lidar to measure low-level cloud properties[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 237: 106610. doi: 10.1016/j.jqsrt.2019.106610
    BOVCHALIUK V, GOLOUB P, PODVIN T, et al. Comparison of aerosol properties retrieved using GARRLiC, LIRIC, and Raman algorithms applied to multi-wavelength lidar and sun/sky-photometer data[J]. Atmospheric Measurement Techniques, 2016, 9(7): 3391-3405. doi: 10.5194/amt-9-3391-2016
    CÓRDOBA-JABONERO C, LOPES F J S, LANDULFO E, et al. Diversity on subtropical and polar cirrus clouds properties as derived from both ground-based lidars and CALIPSO/CALIOP measurements[J]. Atmospheric Research, 2017, 183: 151-165. doi: 10.1016/j.atmosres.2016.08.015
    华雯丽, 韩颖, 乔瀚洋, 等. 敦煌沙尘气溶胶质量浓度垂直特征个例分析[J]. 高原气象,2018,37(5):1428-1439.

    HUA W L, HAN Y, QIAO H Y, et al. Profiling of dust aerosol mass concentration over Dunhuang: case studies[J]. Plateau Meteorology, 2018, 37(5): 1428-1439. (in Chinese)
    TAO Z M, LIU ZH Y, WU D, et al. Determination of aerosol extinction-to-backscatter ratios from simultaneous ground-based and spaceborne lidar measurements[J]. Optics Letters, 2008, 33(24): 2986-2988. doi: 10.1364/OL.33.002986
    SASANO Y, BROWELL E V. Light scattering characteristics of various aerosol types derived from multiple wavelength lidar observations[J]. Applied Optics, 1989, 28(9): 1670-1679. doi: 10.1364/AO.28.001670
    KIM D, CHA H. Rotational Raman lidar for obtaining aerosol scattering coefficients[J]. Optics Letters, 2005, 30(13): 1728-1730. doi: 10.1364/OL.30.001728
    ANSMANN A, WANDINGER U, RIEBESELL M, et al. Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar[J]. Applied Optics, 1992, 31(33): 7113-7131. doi: 10.1364/AO.31.007113
    POVEY A C, GRAINGER R G, PETERS D M, et al. Retrieval of aerosol backscatter, extinction, and lidar ratio from Raman lidar with optimal estimation[J]. Atmospheric Measurement Techniques, 2014, 7(3): 757-776. doi: 10.5194/amt-7-757-2014
    LI S W, DI H G, WANG Q Y, et al. Retrieval of the aerosol extinction coefficient of 1064 nm based on high-spectral-resolution lidar[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 256: 107298. doi: 10.1016/j.jqsrt.2020.107298
    刘东, 周雨迪, 朱小磊, 等. 大气海洋高光谱分辨率激光雷达鉴频特性研究[J]. 大气与环境光学学报,2020,15(1):48-54.

    LIU D, ZHOU Y D, ZHU X L, et al. Investigation on discrimination characteristics of atmospheric and oceanic high-spectral-resolution lidar[J]. Journal of Atmospheric and Environmental Optics, 2020, 15(1): 48-54. (in Chinese)
    戎宇航, 沈雪, 王南朝, 等. 双波长高光谱分辨率激光雷达光谱鉴频器设计[J]. 光学学报,2021,41(4):0401001. doi: 10.3788/AOS202141.0401001

    RONG Y H, SHEN X, WANG N CH, et al. Design of dual-wavelength spectral discriminator for high-spectral-resolution lidar[J]. Acta Optica Sinica, 2021, 41(4): 0401001. (in Chinese) doi: 10.3788/AOS202141.0401001
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article views(1138) PDF downloads(191) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint