Volume 14 Issue 6
Nov.  2021
Turn off MathJax
Article Contents
SUN You-sheng, DUANMU Qing-duo, LIN Peng, MA Wan-zhuo, WANG Tian-shu. 1.6 μm band mode-locked fiber laser[J]. Chinese Optics, 2021, 14(6): 1387-1394. doi: 10.37188/CO.2021-0128
Citation: SUN You-sheng, DUANMU Qing-duo, LIN Peng, MA Wan-zhuo, WANG Tian-shu. 1.6 μm band mode-locked fiber laser[J]. Chinese Optics, 2021, 14(6): 1387-1394. doi: 10.37188/CO.2021-0128

1.6 μm band mode-locked fiber laser

doi: 10.37188/CO.2021-0128
Funds:  Supported by National Natural Science Foundation-Youth Science Foundation of China (No. 62005024); Jilin Province Science and Technology Development Plan (No. 2019201271JC)
More Information
  • Corresponding author: duanmu@cust.edu.cn
  • Received Date: 22 Jun 2021
  • Rev Recd Date: 12 Jul 2021
  • Available Online: 09 Sep 2021
  • Publish Date: 19 Nov 2021
  • In order to obtain the 1.6 μm-band mode-locked pulse based on the soliton self-frequency shift effect, an erbium-doped fiber laser with nonlinear polarization rotation is designed, whose pulse is detected by a dual-output structure. At a pump power of 350 mW, the noise-like pulses with the central wavelength of 1560 nm are detected at the two outputs at the same time by properly adjusting the polarization controller. The 3 dB bandwidth is 17.5 nm, and the pulse duration is 968 fs. When the pump power is further increased to 550 mW, and the 1-port noise-like pulse remains fixed, the central wavelength of the 2-port noise-like pulse redshifts to 1614 nm, the 3 dB bandwidth increases to 64.4 nm, and the pulse duration decreases to 302 fs. The maximum output power of the resonant cavity is 11.4 mW. The experiment also analyzes the influence of the length of dispersion shifted fiber on soliton self-frequency shift. The results show that within a certain range, as the length of the dispersion shifted fiber increases, the frequency shift distance of the soliton self-frequency shift decreases. This 1.6-μm band fiber laser has potential applications in the field of optical communications.


  • loading
  • [1]
    FERMANN M E, HARTL I. Ultrafast fibre lasers[J]. Nature Photonics, 2013, 7(11): 868-874. doi: 10.1038/nphoton.2013.280
    贾浩天, 王军利, 滕浩, 等. 亚皮秒L波段掺铒全光纤锁模激光器[J]. 中国激光,2016,43(11):1101008. doi: 10.3788/CJL201643.1101008

    JIA H T, WANG J L, TENG H, et al. Sub-picosecond L-band erbium-doped all fiber mode-locked laser[J]. Chinese Journal of Lasers, 2016, 43(11): 1101008. (in Chinese) doi: 10.3788/CJL201643.1101008
    ANURUPA, KAUR S, MALHOTRA Y. Performance evaluation and comparative study of novel high and flat gain C + L band Raman + EYDFA co-doped fibre hybrid optical amplifier with EYDFA only amplifier for 100 channels SD-WDM systems[J]. Optical Fiber Technology, 2019, 53: 102016. doi: 10.1016/j.yofte.2019.102016
    贾振安, 李丽, 乔学光, 等. 高平坦度的三级双泵浦结构C+L波段超荧光光源[J]. 光学 精密工程,2010,18(3):558-562.

    JIA ZH A, LI L, QIAO X G, et al. High flattening C+L-band erbium-doped superfluorescent light source with three-stage two-pumping structure[J]. Optics and Precision Engineering, 2010, 18(3): 558-562. (in Chinese)
    杨扬, 乔学光, 刘颖刚, 等. 基于过耦合器的L波段可变波长掺铒光纤激光器[J]. 光学学报,2011,31(2):0214003. doi: 10.3788/AOS201131.0214003

    YANG Y, QIAO X G, LIU Y G, et al. L-band variable wavelength erbium-doped fiber laser based on over-coupler[J]. Acta Optica Sinica, 2011, 31(2): 0214003. (in Chinese) doi: 10.3788/AOS201131.0214003
    王蓟, 赵崇光, 刘洋, 等. L波段高掺铒光纤超荧光光源[J]. 发光学报,2006,27(6):1011-1014. doi: 10.3321/j.issn:1000-7032.2006.06.034

    WANG J, ZHAO CH G, LIU Y, et al. L-band high erbium-doped fiber superfluorescent source[J]. Chinese Journal of Luminescence, 2006, 27(6): 1011-1014. (in Chinese) doi: 10.3321/j.issn:1000-7032.2006.06.034
    XU ZH, JIA D F, WANG ZH Y, et al. Observation of square- and h-shaped pulse from a mode-locked erbium-doped fiber laser[J]. Applied Optics, 2021, 60(13): 3591-3595. doi: 10.1364/AO.423380
    YU W L, XIAO Q R, WANG L L, et al. 219.6 W large-mode-area Er: Yb codoped fiber amplifier operating at 1600 nm pumped by 1018 nm fiber lasers[J]. Optics Letters, 2021, 46(9): 2192-2195. doi: 10.1364/OL.424368
    ISMAIL A, AL-MANSOORI M H, ABDULLAH F, et al. Tunable C + L bands triple frequency spacing multi-wavelength Brillouin-erbium fiber laser[J]. Optical Fiber Technology, 2021, 64: 102535. doi: 10.1016/j.yofte.2021.102535
    ZHU T Y, WANG ZH K, WANG D N, et al. Generation of wavelength-tunable and coherent dual-wavelength solitons in the C + L band by controlling the intracavity loss[J]. Photonics Research, 2019, 7(8): 853-861. doi: 10.1364/PRJ.7.000853
    徐永钊, 刘敏霞, 张耿, 等. 色散平坦渐减光纤中非线性啁啾脉冲的传输及超连续谱的产生[J]. 发光学报,2016,37(4):439-445. doi: 10.3788/fgxb20163704.0439

    XU Y ZH, LIU M X, ZHANG G, et al. Nonlinear chirped-pulse propagation and supercontinuum generation in dispersion-flattened dispersion-decreasing fibers[J]. Chinese Journal of Luminescence, 2016, 37(4): 439-445. (in Chinese) doi: 10.3788/fgxb20163704.0439
    周华, 姚传飞, 贾志旭, 等. 中红外可调谐大能量飞秒脉冲激光产生[J]. 发光学报,2020,41(4):435-441. doi: 10.3788/fgxb20204104.0435

    ZHOU H, YAO CH F, JIA ZH X, et al. Mid-infrared tunable high pulse energy femtosecond pulse laser generation[J]. Chinese Journal of Luminescence, 2020, 41(4): 435-441. (in Chinese) doi: 10.3788/fgxb20204104.0435
    NAMIKI S, EMORI Y. Ultrabroad-band Raman amplifiers pumped and gain-equalized by wavelength-division-multiplexed high-power laser diodes[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2001, 7(1): 3-16. doi: 10.1109/2944.924003
    PENG J S, LUO H, ZHAN L. In-cavity soliton self-frequency shift ultrafast fiber lasers[J]. Optics Letters, 2018, 43(24): 5913-5916. doi: 10.1364/OL.43.005913
    LING Y, HUANG Q, SONG Q, et al. Intracavity birefringence-controlled GHz-tuning range passively harmonic mode-locked fiber laser based on NPR[J]. Applied Optics, 2020, 59(22): 6724-6728. doi: 10.1364/AO.398960
    GAO G G, ZHAO ZH G, CONG ZH H, et al. Widely wavelength-tunable mode locked Er-doped fiber oscillator from 1532 nm to 1594 nm with high signal-to-noise ratio[J]. Optics &Laser Technology, 2021, 135: 106688.
    易波, 贾文, 徐军, 等. 非线性偏振旋转被动锁模光纤激光器自动锁模电路[J]. 光学 精密工程,2013,21(12):2994-3000. doi: 10.3788/OPE.20132112.2994

    YI B, JIA W, XU J, et al. Automatic mode-lock circuit used in NPR passive mode-locked fiber laser[J]. Optics and Precision Engineering, 2013, 21(12): 2994-3000. (in Chinese) doi: 10.3788/OPE.20132112.2994
    LEE J H, VAN HOWE J, XU C, et al. Soliton self-frequency shift: experimental demonstrations and applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14(3): 713-723. doi: 10.1109/JSTQE.2008.915526
    MITSCHKE F M, MOLLENAUER L F. Discovery of the soliton self-frequency shift[J]. Optics Letters, 1986, 11(10): 659-661. doi: 10.1364/OL.11.000659
    GORDON J P. Theory of the Soliton self-frequency shift[J]. Optics Letters, 1986, 11(10): 662-664. doi: 10.1364/OL.11.000662
    NISHIZAWA N, OKAMURA R, GOTO T. Analysis of widely wavelength tunable femtosecond soliton pulse generation using optical fibers[J]. Japanese Journal of Applied Physics, 1999, 38(8R): 4768-4771.
    孔德飞, 贾东方, 冯德军, 等. 光纤中的孤子自频移效应[J]. 激光与光电子学进展,2018,55(10):101902.

    KONG D F, JIA D F, FENG D J, et al. Soliton self-frequency shift in optical fibers[J]. Laser &Optoelectronics Progress, 2018, 55(10): 101902. (in Chinese)
    LIU J, CHEN Y, TANG P H, et al. Generation and evolution of mode-locked noise-like square-wave pulses in a large-anomalous-dispersion Er-doped ring fiber laser[J]. Optics Express, 2015, 23(5): 6418-6427. doi: 10.1364/OE.23.006418
    PARK K D, MIN B, KIM P, et al. Dynamics of cascaded Brillouin–Rayleigh scattering in a distributed fiber Raman amplifier[J]. Optics Letters, 2002, 27(3): 155-157. doi: 10.1364/OL.27.000155
    ZAMZURI A K, ALI M I, AHMAD A, et al. Brillouin-Raman comb fiber laser with cooperative Rayleigh scattering in a linear cavity[J]. Optics Letters, 2006, 31(7): 918-920. doi: 10.1364/OL.31.000918
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article views(439) PDF downloads(69) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint