Volume 14 Issue 6
Nov.  2021
Turn off MathJax
Article Contents
FANG Xiao-min, JIANG Xiao-wei, WU Hua. Dual-wavelength narrow-bandwidth dielectric metamaterial absorber[J]. Chinese Optics, 2021, 14(6): 1327-1340. doi: 10.37188/CO.2021-0075
Citation: FANG Xiao-min, JIANG Xiao-wei, WU Hua. Dual-wavelength narrow-bandwidth dielectric metamaterial absorber[J]. Chinese Optics, 2021, 14(6): 1327-1340. doi: 10.37188/CO.2021-0075

Dual-wavelength narrow-bandwidth dielectric metamaterial absorber

doi: 10.37188/CO.2021-0075
Funds:  Supported by National Natural Science Foundation of China (No. 61575008, No. 61650404), Jiangxi Natural Science Foundation (No. 20171BAB202037), Technology Project of Jiangxi Provincial Education Department (No. GJJ170819), Quzhou Science and Technology Project (No. 2019K20)
More Information
  • Author Bio:

    FANG Xiao-min (1985—), male, born in Quzhou, Zhejiang, master, associate professor. In 2010, he received a master's degree from China Jiliang University. His research focuses on metamaterials and optoelectronic devices. E-mail: zhjfangxiaomin@163.com

    JIANG Xiao-wei (1991—), male, born in Jiangshan, Zhejiang, master, lecturer. He received his master's degree from Beijing Institute of Technology in 2016, and since then he has focused on metamaterials and optoelectronic devices. Email: JosephJiangquzhi@126.com

    WU Hua (1980—), male, from Xiantao, Hubei, Ph.D., associate professor. After obtaining master's and doctoral degrees from Guangdong University of Technology and Beijing University of Technology in 2006 and 2015, he is mainly engaged in the research of micro-nano materials and semiconductor optoelectronic devices. Email: wh1125@126.com

  • Corresponding author: JosephJiangquzhi@126.com
  • Received Date: 13 Apr 2021
  • Rev Recd Date: 11 May 2021
  • Available Online: 11 Aug 2021
  • Publish Date: 19 Nov 2021
  • In order to reduce the manufacturing cost of the narrow-bandwidth Metamaterial Absorber (MA) and broaden its application field, a dual-wavelength dielectric narrow-bandwidth MA, composed of Au substrate, SiO2 dielectric layer and Si dielectric asymmetric grating, is designed based on the finite-difference time-domain method using dielectric materials. It is found by simulation that the proposed narrow-bandwidth MA has ultra-high absorption efficiency at λ1 = 1.20852 μm and λ2 = 1.23821 μm, and the FWHM is only 0.735 nm and 0.077 nm, respectively. The main principle that MA achieves the narrow-bandwidth absorption at λ1 is mainly due to the formation of Fabry-Pérot (FP) cavity resonance in the SiO2 layer, while the narrow-bandwidth absorption of MA at λ2 is mainly due to the guided mode resonance effect of the incident light in the asymmetric grating. The theoretical calculations show that the absorption characteristics can be affected more significantly by changing the structural parameters of the MA.


  • loading
  • [1]
    ZHANG J F, YUAN X D, QIN SH Q. Tunable terahertz and optical metamaterials[J]. Chinese Optics, 2014, 7(3): 349-364. (in Chinese)
    DU K K, LI Q, LV Y B, et al. Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST[J]. Light,Science &Applications, 2017, 6(1): e16194.
    HE X Y, LIU F, LIN F T, et al. Tunable 3D Dirac-semimetals supported mid-IR hybrid plasmonic waveguides[J]. Optics Letters, 2021, 46(3): 472-475. doi: 10.1364/OL.415187
    HE X Y, LIU F, LIN F T, et al. Tunable terahertz Dirac semimetal metamaterials[J]. Journal of Physics D:Applied Physics, 2021, 54(3): 235103.
    MOU N L, LIU X L, WEI T, et al. Large-scale, low-cost, broadband and tunable perfect optical absorber based on phase-change material[J]. Nanoscale, 2020, 12(9): 5374-5379. doi: 10.1039/C9NR07602F
    LANDY N I, SAJUYIGBE S, MOCK J J, et al. Perfect metamaterial absorber[J]. Physical Review Letters, 2008, 100(20): 207402. doi: 10.1103/PhysRevLett.100.207402
    TUAN T S, HOA N T Q. Numerical study of an efficient broadband metamaterial absorber in visible light region[J]. IEEE Photonics Journal, 2019, 11(3): 4600810.
    PENG J, HE X Y, SHI CH Y Y, et al. Investigation of graphene supported terahertz elliptical metamaterials[J]. Physica E:Low-Dimensional Systems and Nanostructures, 2020, 124: 114309. doi: 10.1016/j.physe.2020.114309
    YAO G, LING F R, YUE J, et al. Dual-band tunable perfect metamaterial absorber in the THz range[J]. Optics Express, 2016, 24(2): 1518-1527. doi: 10.1364/OE.24.001518
    LIU N, MESCH M, WEISS T, et al. Infrared perfect absorber and its application as plasmonic sensor[J]. Nano Letters, 2010, 10(7): 2342-2348. doi: 10.1021/nl9041033
    GREFFET J J, CARMINATI R, JOULAIN K, et al. Coherent emission of light by thermal sources[J]. Nature, 2002, 416(6876): 61-64. doi: 10.1038/416061a
    ZHU ZH H, EVANS P G, HAGLUND R F JR, et al. Dynamically reconfigurable metadevice employing nanostructured phase-change materials[J]. Nano Letters, 2017, 17(8): 4881-4885. doi: 10.1021/acs.nanolett.7b01767
    ANKER J N, HALL W P, LYANDRES O, et al. Biosensing with plasmonic nanosensors[J]. Nature Materials, 2008, 7(6): 442-453. doi: 10.1038/nmat2162
    MENG L J, ZHAO D, RUAN ZH C, et al. Optimized grating as an ultra-narrow band absorber or plasmonic sensor[J]. Optics Letters, 2014, 39(5): 1137-1140. doi: 10.1364/OL.39.001137
    FENG A S, YU Z J, SUN X K. Ultranarrow-band metagrating absorbers for sensing and modulation[J]. Optics Express, 2018, 26(22): 28197-28205. doi: 10.1364/OE.26.028197
    KANG S, QIAN ZH Y, RAJARAM V, et al. Ultra-narrowband metamaterial absorbers for high spectral resolution infrared spectroscopy[J]. Advanced Optical Materials, 2019, 7(2): 1801236. doi: 10.1002/adom.201801236
    RRN ZH B, SUN Y H, LIN Z H, et al. Ultra-narrow band perfect metamaterial absorber based on dielectric-metal periodic configuration[J]. Optical Materials, 2019, 89: 308-315. doi: 10.1016/j.optmat.2019.01.020
    LIAO Y L, ZHAO Y. Ultra-narrowband dielectric metamaterial absorber with ultra-sparse nanowire grids for sensing applications[J]. Scientific Reports, 2020, 10(1): 1480. doi: 10.1038/s41598-020-58456-y
    XU Z CH, GAO R M, DING CH F, et al. Multiband metamaterial absorber at terahertz frequencies[J]. Chinese Physics Letters, 2014, 31(5): 054205. doi: 10.1088/0256-307X/31/5/054205
    HU F R, WANG L, QUAN B G, et al. Design of a polarization insensitive multiband terahertz metamaterial absorber[J]. Journal of Physics D:Applied Physics, 2013, 46(19): 195103. doi: 10.1088/0022-3727/46/19/195103
    DING F, DAI J, CHEN Y T, et al. Broadband near-infrared metamaterial absorbers utilizing highly lossy metals[J]. Scientific Reports, 2016, 6(1): 39445. doi: 10.1038/srep39445
    JOHNSON P B, CHRISTY R W. Optical constants of the noble metals[J]. Physical Review B, 1972, 6(12): 4370-4379. doi: 10.1103/PhysRevB.6.4370
    LI W CH, ZHOU X, YING Y, et al. Polarization-insensitive wide-angle multiband metamaterial absorber with a double-layer modified electric ring resonator array[J]. AIP Advances, 2015, 5(6): 067151. doi: 10.1063/1.4923194
    WANG Q. Study on the mechanism and characteristics of guided-mode resonance subwavelength device[D]. Shanghai: University of Shanghai for Science and Technology, 2012: 44-46. (in Chinese)
    ZENG ZH W, LIU H T, ZHANG S W. Design of extraordinary-optical-transimission refractive-index sensor of subwavelength metallic slit array based on a Fabry-Perot model[J]. Acta Physica Sinica, 2012, 61(20): 200701. (in Chinese) doi: 10.7498/aps.61.200701
    LIU W X. Design and characterization of controllable linewidth guided-mode resonance filter[D]. Nanchang: Nanchang University, 2011: 18-22. (in Chinese)
    JIANG X W, WU H. Metamaterial absorber with controllable absorption wavelength and absorption efficiency[J]. Acta Physica Sinica, 2021, 70(2): 027804. (in Chinese) doi: 10.7498/aps.70.20201173
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article views(568) PDF downloads(76) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint