Volume 14 Issue 5
Sep.  2021
Turn off MathJax
Article Contents
MA Jun-chao, MENG Li-li, ZHANG Rui-xue, ZHUO Xiao, NI Kai, WU Guan-hao, SUN Dong. Research progress on coherent synthesis of optical frequency comb[J]. Chinese Optics, 2021, 14(5): 1056-1068. doi: 10.37188/CO.2021-0071
Citation: MA Jun-chao, MENG Li-li, ZHANG Rui-xue, ZHUO Xiao, NI Kai, WU Guan-hao, SUN Dong. Research progress on coherent synthesis of optical frequency comb[J]. Chinese Optics, 2021, 14(5): 1056-1068. doi: 10.37188/CO.2021-0071

Research progress on coherent synthesis of optical frequency comb

doi: 10.37188/CO.2021-0071
Funds:  Supported by the National Key Research and Development Program of China (No. 2020YFA0308800); the National Natural Science Foundation of China (No. 12034001, No. 51835007); the Beijing Natural Science Foundation (No. JQ19001)
More Information
  • Corresponding author: sundong@pku.edu.cn
  • Received Date: 2021-04-01
  • Rev Recd Date: 2021-04-29
  • Available Online: 2021-05-18
  • Publish Date: 2021-09-18
  • Optical Frequency Comb (OFC) possesses unique time(frequency) domain characteristics such as narrow pulse width, high frequency precision, stable frequency comb teeth and well-defined optical coherence, etc. Therefore, it has become a hot research topic in various fields including ultra-fast laser technology and metrology science in recent years. Meanwhile, OFC has also been developed into an important scientific research instrument. Recently, a novel light source based on the coherent synthesis of OFCs has been developed, which can realize the periodical, high-speed (up to radio frequency) and stable modulation of the polarization or the orbital angular momentum of light. In this review, we try to introduce recent developments on the fundamental principles, experimental techniques and characterization methods of the novel light source based on the coherent synthesis of OFCs, starting from the basic concepts of OFC and mainly covering two aspects: polarization modulation and orbital angular momentum modulation respectively. We also try to provide some perspectives on the applications of OFC based on the coherent synthesis techniques in the fields of solid-state spectroscopy, optical manipulation and the interaction between light and matter, etc.
  • loading
  • [1]
    DIDDAMS S A, JONES D J, MA L S, et al. Optical frequency measurement across a 104-THz gap with a femtosecond laser frequency comb[J]. Optics Letters, 2000, 25(3): 186-188. doi: 10.1364/OL.25.000186
    [2]
    UDEM T, HOLZWARTH R, HÄNSCH T W. Optical frequency metrology[J]. Nature, 2002, 416(6877): 233-237. doi: 10.1038/416233a
    [3]
    HOLLBERG L, DIDDAMS S, BARTELS A, et al. The measurement of optical frequencies[J]. Metrologia, 2005, 42(3): S105-S124. doi: 10.1088/0026-1394/42/3/S12
    [4]
    LUDLOW A D, BOYD M M, YE J, et al. Optical atomic clocks[J]. Reviews of Modern Physics, 2015, 87(2): 637-701. doi: 10.1103/RevModPhys.87.637
    [5]
    GIORGETTA F R, SWANN W C, SINCLAIR L C, et al. Optical two-way time and frequency transfer over free space[J]. Nature Photonics, 2013, 7(6): 434-438. doi: 10.1038/nphoton.2013.69
    [6]
    MILLO J, BOUDOT R, LOURS M, et al. Ultra-low-noise microwave extraction from fiber-based optical frequency comb[J]. Optics Letters, 2009, 34(23): 3707-3709. doi: 10.1364/OL.34.003707
    [7]
    FORTIER T M, KIRCHNER M S, QUINLAN F, et al. Generation of ultrastable microwaves via optical frequency division[J]. Nature Photonics, 2011, 5(7): 425-429. doi: 10.1038/nphoton.2011.121
    [8]
    CODDINGTON I, SWANN W C, NENADOVIC L, et al. Rapid and precise absolute distance measurements at long range[J]. Nature Photonics, 2009, 3(6): 351-356. doi: 10.1038/nphoton.2009.94
    [9]
    JANG Y S, KIM S W. Distance measurements using mode-locked lasers: a review[J]. Nanomanufacturing and Metrology, 2018, 1(3): 131-147. doi: 10.1007/s41871-018-0017-8
    [10]
    CODDINGTON I, NEWBURY N, SWANN W. Dual-comb spectroscopy[J]. Optica, 2016, 3(4): 414-426. doi: 10.1364/OPTICA.3.000414
    [11]
    LOMSADZE B, SMITH B C, CUNDIFF S T. Tri-comb spectroscopy[J]. Nature Photonics, 2018, 12(11): 676-680. doi: 10.1038/s41566-018-0267-4
    [12]
    IDEGUCHI T, HOLZNER S, BERNHARDT B, et al. Coherent Raman spectro-imaging with laser frequency combs[J]. Nature, 2013, 502(7471): 355-358. doi: 10.1038/nature12607
    [13]
    SUMIHARA K A, OKUBO S, OKANO M, et al. Polarization-sensitive dual-comb spectroscopy[J]. Journal of the Optical Society of America B, 2017, 34(1): 154-159. doi: 10.1364/JOSAB.34.000154
    [14]
    DURÁN V, de CHATELLUS H G, SCHNEBÉLIN C, et al. Optical frequency combs generated by acousto-optic frequency-shifting loops[J]. IEEE Photonics Technology Letters, 2019, 31(23): 1878-1881. doi: 10.1109/LPT.2019.2947655
    [15]
    PARRIAUX A, HAMMANI K, MILLOT G. Electro-optic frequency combs[J]. Advances in Optics and Photonics, 2020, 12(1): 223-287. doi: 10.1364/AOP.382052
    [16]
    SUMIHARA K A, OKUBO S, OGUCHI K, et al. Polarization-sensitive dual-comb spectroscopy with an electro-optic modulator for determination of anisotropic optical responses of materials[J]. Optics Express, 2019, 27(24): 35141-35165. doi: 10.1364/OE.27.035141
    [17]
    TORRES-COMPANY V, WEINER A M. Optical frequency comb technology for ultra-broadband radio-frequency photonics[J]. Laser &Photonics Reviews, 2014, 8(3): 368-393.
    [18]
    ASAHARA A, KONDO K I, WANG Y, et al.. Coherent control of relative carrier envelope phase in dual-comb spectroscopy[C]. Proceedings of Science and Innovations 2017, Optical Society of America, 2017: SF1C.6.
    [19]
    ASAHARA A, MINOSHIMA K. Coherent multi-comb pulse control demonstrated in polarization-modulated dual-comb spectroscopy technique[J]. Applied Physics Express, 2019, 12(7): 072014. doi: 10.7567/1882-0786/ab2991
    [20]
    ZHANG R X, GONG Y M, DAY M W, et al. Radio frequency polarization modulation based on an optical frequency comb[J]. Review of Scientific Instruments, 2020, 91(8): 083111. doi: 10.1063/5.0016256
    [21]
    ASAHARA A, SHOJI S, KONDO K I, et al.. Coherent spatiotemporal phase control by combining optical frequency combs and optical vortices[C]. Proceedings of Science and Innovations 2018, Optical Society of America, 2018: STu4P.3.
    [22]
    ASAHARA A, SHOJI S, MINOSHIMA K. Optical combs and optical vortices combined for spatiotemporal manipulation of light and matter[J]. arXiv: 2005.04705, 2020.
    [23]
    FRANKE-ARNOLD S, LEACH J, PADGETT M J, et al. Optical ferris wheel for ultracold atoms[J]. Optics Express, 2007, 15(14): 8619-8625. doi: 10.1364/OE.15.008619
    [24]
    ALLEN L, BEIJERSBERGEN M W, SPREEUW R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 1992, 45(11): 8185-8189. doi: 10.1103/PhysRevA.45.8185
    [25]
    WANG X W, NIE ZH Q, LIANG Y, et al. Recent advances on optical vortex generation[J]. Nanophotonics, 2018, 7(9): 1533-1556. doi: 10.1515/nanoph-2018-0072
    [26]
    MARRUCCI L, MANZO C, PAPARO D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media[J]. Physical Review Letters, 2006, 96(16): 163905. doi: 10.1103/PhysRevLett.96.163905
    [27]
    MARRUCCI L, KARIMI E, SLUSSARENKO S, et al. Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications[J]. Journal of Optics, 2011, 13(6): 064001. doi: 10.1088/2040-8978/13/6/064001
    [28]
    SHEN Y J, WANG X J, XIE ZH W, et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities[J]. Light:Science &Applications, 2019, 8: 90.
    [29]
    JI ZH R, LIU W J, KRYLYUK S, et al. Photocurrent detection of the orbital angular momentum of light[J]. Science, 2020, 368(6492): 763-767. doi: 10.1126/science.aba9192
    [30]
    ASAHARA A, ADACHI T, WANG Y, et al.. Orbital angular momentum-resolved dual-comb spectroscopy towards topological material studies[C]. Proceedings of Science and Innovations 2019, Optical Society of America, 2019: SM2H.8.
    [31]
    ASAHARA A, ADACHI T, AKIYAMA S, et al.. Spatiotemporal characterization of optical vortex light-wave using hyperspectral dual-comb imaging[C]. Proceedings of Science and Innovations 2020, Optical Society of America, 2020: STu4N.6.
    [32]
    ASAHARA A, ADACHI T, AKIYAMA S, et al.. Detection of optical vortices with various topological charges using single-pixel dual-comb imaging[C]. Proceedings of Laser Science 2020, Optical Society of America, 2020: LM7F.4.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article views (494) PDF downloads(103) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return