Volume 14 Issue 6
Nov.  2021
Turn off MathJax
Article Contents
LIU Zun-bei, CAI Yi, LIU Fu-ping, MA Jun-hui, ZHANG Meng-jiao, WANG Ling-xue. Aperture-divided ultraviolet multiband imaging optical system[J]. Chinese Optics, 2021, 14(6): 1476-1485. doi: 10.37188/CO.2021-0052
Citation: LIU Zun-bei, CAI Yi, LIU Fu-ping, MA Jun-hui, ZHANG Meng-jiao, WANG Ling-xue. Aperture-divided ultraviolet multiband imaging optical system[J]. Chinese Optics, 2021, 14(6): 1476-1485. doi: 10.37188/CO.2021-0052

Aperture-divided ultraviolet multiband imaging optical system

doi: 10.37188/CO.2021-0052
Funds:  Supported by National Natural Science Foundation of China (No. 61471044)
More Information
  • Corresponding author: neobull@bit.edu.cn
  • Received Date: 10 Mar 2021
  • Rev Recd Date: 07 Apr 2021
  • Available Online: 11 Aug 2021
  • Publish Date: 19 Nov 2021
  • Ultraviolet radiation of characteristic free radicals and blackbody radiation in combustion flames is essential to the quantitative analysis of flame temperature and fuel composition. An aperture-divided ultraviolet multiband imaging optical system is designed, which consists of an aperture-divided system and an image-combined system. The lens materials are fused silica and calcium fluoride. By placing multiband ultraviolet filters in each divided channel, the combustion flame can be imaged on the detector’s four regions with four ultraviolet bands, including 240~280 nm, 308 nm, 300~360 nm, and 390 nm. The parameters of the system are: a 2.85 F-number, a 10° field-of-view, and a 277.2 mm total length. The entrance pupil diameter of the aperture-divided system is 10 mm, and the single-channel focal length is 43.88 mm. The Modulation Transfer Function (MTF) is close to the diffraction limit. The MTF value of the object surface at the edge of the image-combined system reaches 0.45 at 45 lp/mm. After optimizing the combination of the two parts, the MTF value of the total system surpassed 0.5 at 45 lp/mm in Nyquist frequency. Monte Carlo analysis on the tolerances gives a yield rate of more than 20%. The results show that this system is suitable for research and has practical value.

     

  • loading
  • [1]
    宋旭东, 郭庆华, 龚岩, 等. 气流床撞击流水煤浆气化火焰光谱辐射特性实验研究[J]. 光谱学与光谱分析,2020,40(2):465-471.

    SONG X D, GUO Q H, GONG Y, et al. Chemiluminescence characteristics of coal-water slurry impinging flames in bench-scale entrained flow gasifier[J]. Spectroscopy and Spectral Analysis, 2020, 40(2): 465-471. (in Chinese)
    [2]
    张磊, 陈绍武, 赵海川, 等. 基于光电探测的多光谱测温装置[J]. 中国光学,2019,12(2):289-293. doi: 10.3788/co.20191202.0289

    ZHANG L, CHEN SH W, ZHAO H CH, et al. Multi-spectral temperature measuring system based on photoelectric detection[J]. Chinese Optics, 2019, 12(2): 289-293. (in Chinese) doi: 10.3788/co.20191202.0289
    [3]
    KRABICKA J, LU G, YAN Y. Profiling and characterization of flame radicals by combining spectroscopic imaging and neural network techniques[J]. IEEE Transactions on Instrumentation and Measurement, 2011, 60(5): 1854-1860. doi: 10.1109/TIM.2010.2102411
    [4]
    周莹, 白永辉, 宋旭东, 等. 自由基的化学发光特性在火焰光谱诊断的应用综述[J]. 光谱学与光谱分析,2020,40(11):3358-3364.

    ZHOU Y, BAI Y H, SONG X D, et al. Application of chemiluminescence in spectral diagnosis: a review[J]. Spectroscopy and Spectral Analysis, 2020, 40(11): 3358-3364. (in Chinese)
    [5]
    韩培仙, 任戈, 刘永, 等. 可见/中波双波段共口径光学系统设计[J]. 应用光学,2020,41(3):435-440. doi: 10.5768/JAO202041.0301001

    HAN P X, REN G, LIU Y, et al. Optical design of VIS/MWIR dual-band common-aperture system[J]. Journal of Applied Optics, 2020, 41(3): 435-440. (in Chinese) doi: 10.5768/JAO202041.0301001
    [6]
    韩仲志, 万剑华, 刘杰, 等. 利用油品紫外荧光特性的多光谱成像检测[J]. 发光学报,2015,36(11):1335-1341. doi: 10.3788/fgxb20153611.1335

    HAN ZH ZH, WAN J H, LIU J, et al. Multispectral imaging detection using the ultraviolet fluorescence characteristics of oil[J]. Chinese Journal of Luminescence, 2015, 36(11): 1335-1341. (in Chinese) doi: 10.3788/fgxb20153611.1335
    [7]
    高泽东, 高洪兴, 朱院院, 等. 快照式光谱成像技术综述[J]. 光学 精密工程,2020,28(6):1323-1343. doi: 10.3788/OPE.20202806.1323

    GAO Z D, GAO H X, ZHU Y Y, et al. Review of snapshot spectral imaging technologies[J]. Optics and Precision Engineering, 2020, 28(6): 1323-1343. (in Chinese) doi: 10.3788/OPE.20202806.1323
    [8]
    苏永鹏, 谢洪波, 王瑶, 等. 分孔径中波红外多光谱成像光学系统的设计[J]. 应用光学,2018,39(6):767-772.

    SU Y P, XIE H B, WANG Y, et al. Design of aperture-divided multispectral imaging system in mid-infrared band[J]. Journal of Applied Optics, 2018, 39(6): 767-772. (in Chinese)
    [9]
    王琪, 梁静秋, 梁中翥, 等. 分孔径红外偏振成像仪光学系统设计[J]. 中国光学,2018,11(1):92-99. doi: 10.3788/co.20181101.0092

    WANG Q, LIANG J Q, LIANG ZH ZH, et al. Design of decentered aperture-divided optical system of infrared polarization imager[J]. Chinese Optics, 2018, 11(1): 92-99. (in Chinese) doi: 10.3788/co.20181101.0092
    [10]
    万钇良. 红外分孔径偏振成像技术研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2019.

    WAN Y L. Study on infrared split-aperture polarization imaging technology[D]. Changchun: University of Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences), 2019. (in Chinese).
    [11]
    陈阳, 刘钧, 岳宝毅. 基于孔径/视场分割的红外复眼接收系统设计[J]. 激光与红外,2019,49(4):454-459. doi: 10.3969/j.issn.1001-5078.2019.04.011

    CHEN Y, LIU J, YUE B Y. Design of infrared compound eye receiving system based on aperture /field segmentation[J]. Laser &Infrared, 2019, 49(4): 454-459. (in Chinese) doi: 10.3969/j.issn.1001-5078.2019.04.011
    [12]
    李西杰, 刘钧, 邹纯博, 等. 双波段共口径同时偏振光学系统设计[J]. 西安工业大学学报,2020,40(1):25-31.

    LI X J, LIU J, ZOU CH B, et al. Design of dual-band optical system with shared-aperture and complete polarization[J]. Journal of Xi'an Technological University, 2020, 40(1): 25-31. (in Chinese)
    [13]
    中国科学院西安光学精密机械研究所. 会聚光分孔径多光谱成像光学系统: 中国, 110631701A[P]. 2019-12-31.

    Xi’an Institute Optics & Precision Mechanics CAS. Convergent light sub-aperture multispectral imaging optical system: CN, 110631701A[P]. 2019-12-31. (in Chinese).
    [14]
    CARLES G, BABINGTON J, WOOD A, et al. Superimposed multi-resolution imaging[J]. Optics Express, 2017, 25(26): 33043-33055. doi: 10.1364/OE.25.033043
    [15]
    李芸. 紧凑型分孔径快照式光谱成像系统研究[D]. 西安: 中国科学院大学(中国科学院西安光学精密机械研究所), 2018.

    LI Y. Research on the compact division-aperture snapshot spectral imaging system[D]. Xi’an: University of Chinese Academy of Sciences (Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences), 2018. (in Chinese).
    [16]
    胡凯丰. 仿生多孔径系统超分辨成像研究[D]. 长春: 吉林大学, 2020.

    HU K F. Research on super-resolution imaging system with bionic muti-apertures[D]. Changchun: Jilin University, 2020. (in Chinese).
    [17]
    张猛蛟, 蔡毅, 江峰, 等. 紫外增强硅基成像探测器进展[J]. 中国光学,2019,12(1):19-37. doi: 10.3788/co.20191201.0019

    ZHANG M J, CAI Y, JIANG F, et al. Silicon-based ultraviolet photodetection: progress and prospects[J]. Chinese Optics, 2019, 12(1): 19-37. (in Chinese) doi: 10.3788/co.20191201.0019
    [18]
    朱晓秀, 葛咏, 李建军, 等. 量子点增强硅基探测成像器件的研究进展[J]. 中国光学,2020,13(1):62-74. doi: 10.3788/co.20201301.0062

    ZHU X X, GE Y, LI J J, et al. Research progress of quantum dot enhanced silicon-based photodetectors[J]. Chinese Optics, 2020, 13(1): 62-74. (in Chinese) doi: 10.3788/co.20201301.0062
    [19]
    何磊, 龚岩, 郭庆华, 等. 甲烷/氧气层流同轴射流扩散火焰OH*自由基的数值研究[J]. 光谱学与光谱分析,2018,38(3):685-691.

    HE L, GONG Y, GUO Q H, et al. Numerical study on OH* radicals in the laminar methane/oxygen Co-flowing jet diffusion flame[J]. Spectroscopy and Spectral Analysis, 2018, 38(3): 685-691. (in Chinese)
    [20]
    LAMOUREUX N, EL MERHUBI H, GASNOT L, et al. Measurements and modelling of HCN and CN species profiles in laminar CH4/O2/N2 low pressure flames using LIF/CRDS techniques[J]. Proceedings of the Combustion Institute, 2015, 35(1): 745-752. doi: 10.1016/j.proci.2014.05.126
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(2)

    Article views(614) PDF downloads(64) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return