Volume 14 Issue 6
Nov.  2021
Turn off MathJax
Article Contents
ZHANG Shu-fen, JIANG Shan, DONG Lei, WANG Jian-li, WU Na, LI Wen-hao. High accuracy interferometric star tracker based on diffraction grating[J]. Chinese Optics, 2021, 14(6): 1368-1377. doi: 10.37188/CO.2021-0051
Citation: ZHANG Shu-fen, JIANG Shan, DONG Lei, WANG Jian-li, WU Na, LI Wen-hao. High accuracy interferometric star tracker based on diffraction grating[J]. Chinese Optics, 2021, 14(6): 1368-1377. doi: 10.37188/CO.2021-0051

High accuracy interferometric star tracker based on diffraction grating

doi: 10.37188/CO.2021-0051
Funds:  Supported by National Key R&D Program of China (No. 2018YFF01011000); National Natural Science Foundation of China (NSFC) (No. 61905244); Research and Development Project in Key Areas of Guangdong Province (No. 201913010144001); Special Fund Project of High-Tech Industrialization for Science and Technology Cooperation Between Jilin Province and Chinese Academy of Sciences (No. 2020SYHZ0033)
More Information
  • Corresponding author: leewenho@163.com
  • Received Date: 10 Mar 2021
  • Rev Recd Date: 26 Mar 2021
  • Available Online: 21 Jun 2021
  • Publish Date: 19 Nov 2021
  • In order to overcome the problems where traditional star trackers’ directional accuracy, field of view, volume, weight and other factors are difficult to balance, we studied a highly accurate interferometric star tracker structure based on a diffraction grating. By using the angular spectrum theory, the mathematical models between the incident angle of starlight, the centroid position of spots, and the relative intensity of spots on the detector were established. Secondly, the methods that estimate a relative coarse position of the target star from a centriod of the spots on the detector, and estimate a relative fine position of the target star from the relative intensity of the spots were determined. Therefore, the relative incident angle of star light was obtained by using successive estimates of the coarse and fine positions. Then, we drew a conclusion that the angle resolution for a single star is affected by the grating period, the distance between the two gratings and the electric subdivision of the intensity signal. Finally, a computer simulation was used to confirm the feasibility of this relative fine positioning technique and this combination technique of coarse positioning and fine positioning. The results show that this measure is praticable, and the angle resolution for a single star can reach 0.1 arc-seconds when the grating period is 50 μm, the distance between two gratings is 50 mm and the intensity signal of each period is subdivided by 1024 times. Compared with traditional star trackers, the accuracy is improved significantly.

     

  • loading
  • [1]
    刘鹏. CCD星敏感器关键技术的研究[D]. 哈尔滨: 哈尔滨工业大学, 2012.

    LIU P. Research on key technologies of CCD star sensor[D]. Harbin: Harbin Institute of Technology, 2012. (in Chinese).
    [2]
    王晓东. 大视场高精度星敏感器技术研究[D]. 长春: 中国科学院研究生院(长春光学精密机械与物理研究所), 2003.

    WANG X D. Study on wild-field-of-view and high-accuracy star sensor technologies[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2003. (in Chinese).
    [3]
    赵阳. 新型反射式星敏感器光学系统设计[D]. 哈尔滨: 哈尔滨工业大学, 2007.

    ZHAO Y. New type reflective optical system design for a star sensor[D]. Harbin: Harbin Institute of Technology, 2007. (in Chinese).
    [4]
    XU B T, LV J H, ZHOU X L, et al. Design and analysis of a star simulator suitable for confined space[J]. IOP Conference Series:Materials Science and Engineering, 2019, 504: 012088. doi: 10.1088/1757-899X/504/1/012088
    [5]
    SARVI M N, ABBASI-MOGHADAM D, ABOLGHASEMI M, et al. Design and implementation of a star-tracker for LEO satellite[J]. Optik, 2020, 208: 164343. doi: 10.1016/j.ijleo.2020.164343
    [6]
    吴卫. 高精度星敏感器结构设计和分析[D]. 西安: 中国科学院研究生院(西安光学精密机械研究所), 2010.

    WU W. Structural design and analysis of high accuracy star sensor[D]. Xi’an: Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, 2010. (in Chinese).
    [7]
    李璟, 杨宝喜, 胡中华, 等. 星敏感器光学系统的研制与性能测试[J]. 光学学报,2013,33(5):0522005. doi: 10.3788/AOS201333.0522005

    LI J, YANG B X, HU ZH H, et al. Development and performance testing of optical system for star sensor[J]. Acta Optica Sinica, 2013, 33(5): 0522005. (in Chinese) doi: 10.3788/AOS201333.0522005
    [8]
    柴毅. 基于多敏感器的卫星在轨高精度姿态确定技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2018.

    CHAI Y. Research on high accuracy attitude determination methods for on-orbit satellite based on multiple sensors[D]. Harbin: Harbin Engineering University, 2018. (in Chinese).
    [9]
    梁斌, 朱海龙, 张涛, 等. 星敏感器技术研究现状及发展趋势[J]. 中国光学,2016,9(1):16-19. doi: 10.3788/co.20160901.0016

    LIANG B, ZHU H L, ZHANG T, et al. Research status and development tendency of star tracker technique[J]. Chinese Optics, 2016, 9(1): 16-19. (in Chinese) doi: 10.3788/co.20160901.0016
    [10]
    王红睿, 李会端, 方伟. 航天太阳敏感器的应用与发展[J]. 中国光学,2013,6(4):481-489.

    WANG H R, LI H D, FANG W. Application and development of space sun sensors[J]. Chinese Optics, 2013, 6(4): 481-489. (in Chinese)
    [11]
    PHAM N V B, NGUYEN T N, NGO T D, et al. A novel approach for pivot-based sensor fusion of small satellites[J]. Physical Communication, 2021, 45: 101261. doi: 10.1016/j.phycom.2020.101261
    [12]
    王军. 高动态星敏感器关键技术研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2019.

    WANG J. Research on key technologies of highly dynamic star sensor[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2019. (in Chinese).
    [13]
    WANG X Y, ZHENG R, WU Y P, et al. Study on the method of precision adjustment of star sensor[J]. Nanotechnology and Precision Engineering, 2018, 1(4): 248-257. doi: 10.1016/j.npe.2018.12.001
    [14]
    王军, 何昕, 魏仲慧, 等. 基于区域滤波的模糊星图复原方法[J]. 中国光学,2019,12(2):321-331. doi: 10.3788/co.20191202.0321

    WANG J, HE X, WEI ZH H, et al. Restoration method for blurred star images based on region filters[J]. Chinese Optics, 2019, 12(2): 321-331. (in Chinese) doi: 10.3788/co.20191202.0321
    [15]
    王凡, 常军, 郝云彩, 等. 高精度星敏感器星像能量分布模型研究[J]. 激光与光电子学进展,2015,52(5):051203.

    WANG F, CHANG J, HAO Y C, et al. Mathematical model research of star image energy distribution of star tracker[J]. Laser &Optoelectronics Progress, 2015, 52(5): 051203. (in Chinese)
    [16]
    伍雁雄. 高精度星敏感器若干关键技术研究[D]. 长春: 中国科学院研究生院(长春光学精密机械与物理研究所), 2015.

    WU Y X. Study on several key technologies for high-accuracy star sensor[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2015. (in Chinese).
    [17]
    唐圣金, 郭晓松, 周召发, 等. 星点亚像元定位中系统误差的改进补偿方法[J]. 红外与激光工程,2013,42(6):1502-1507. doi: 10.3969/j.issn.1007-2276.2013.06.021

    TANG SH J, GUO X S, ZHOU ZH F, et al. Modified systematic error compensation algorithm for star centroid sub-pixel detection[J]. Infrared and Laser Engineering, 2013, 42(6): 1502-1507. (in Chinese) doi: 10.3969/j.issn.1007-2276.2013.06.021
    [18]
    谭迪, 张新, 伍雁雄, 等. 光学像差对星点质心定位误差的影响分析[J]. 红外与激光工程,2017,46(2):0217004. doi: 10.3788/IRLA201746.0217004

    TAN D, ZHANG X, WU Y X, et al. Analysis of effect of optical aberration on star centroid location error[J]. Infrared and Laser Engineering, 2017, 46(2): 0217004. (in Chinese) doi: 10.3788/IRLA201746.0217004
    [19]
    HANCOCK B R, STIRBL R C, CUNNINGHAM T J, et al. CMOS active pixel sensor specific performance effects on star tracker/imager position accuracy[J]. Proceedings of SPIE, 2001, 4284: 43-53. doi: 10.1117/12.426872
    [20]
    孟祥月, 王洋, 张磊, 等. 大相对孔径宽光谱星敏感器光学镜头设计[J]. 红外与激光工程,2019,48(7):0718005. doi: 10.3788/IRLA201948.0718005

    MENG X Y, WANG Y, ZHANG L, et al. Lens design of star sensor with large relative aperture and wide spectral range[J]. Infrared and Laser Engineering, 2019, 48(7): 0718005. (in Chinese) doi: 10.3788/IRLA201948.0718005
    [21]
    薛庆生. 折反式大口径星敏感器光学设计及杂散光分析[J]. 光学学报,2016,36(2):0222001. doi: 10.3788/AOS201636.0222001

    XUE Q SH. Optical design and stray light analysis for large aperture catadioptricstar sensor[J]. Acta Optica Sinica, 2016, 36(2): 0222001. (in Chinese) doi: 10.3788/AOS201636.0222001
    [22]
    WANG Y, ZHANG L, MENG X Y, et al. A large relative aperture and wide-spectrum star sensor optical lens design[J]. Proceedings of SPIE, 2018, 10964: 109642T.
    [23]
    BAI Y, LI J L, ZHA R W, et al. Catadioptric optical system design of 15-magnitude star sensor with large entrance pupil diameter[J]. Sensors, 2020, 20(19): 5501. doi: 10.3390/s20195501
    [24]
    LEE S, SALEEM R, LEE S S. Micro star tracker with a curved vane for a short baffle length and sharp stray light attenuation[J]. Applied Optics, 2020, 59(13): 4131-4142. doi: 10.1364/AO.380774
    [25]
    MURUGANANDAN V A, PARK J H, LEE S, et al. Development of the arcsecond pico star tracker (APST)[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, 2017, 60(6): 355-365. doi: 10.2322/tjsass.60.355
    [26]
    HUTCHIN R A. Interferometric tracking device: US, 8045178B2[P]. 2011-10-25.
    [27]
    DU J, BAI J, WANG L, et al. Optical design and accuracy analysis of interferometric star tracker[J]. Proceedings of SPIE, 2018, 10815: 1081504.
    [28]
    杜娟, 白剑, 黄潇, 等. 基于二维光栅的双轴干涉星敏感器装置: 中国, 207600470U[P]. 2018-07-10.

    DU J, BAI J, HUANG X, et al. . Star sensor device is interfered to biax based on two -dimensional grating: CN, 207600470U[P]. 2018-07-10. (in Chinese).
    [29]
    吕乃光. 傅里叶光学[M]. 2版. 北京: 机械工业出版社, 2016.

    LV N G. Fourier Optics[M]. 2nd ed. Beijing: China Machine Press, 2016. (in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article views(885) PDF downloads(82) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return