Volume 14 Issue 5
Sep.  2021
Turn off MathJax
Article Contents
YU Xiao-chang, XU Ya-qing, CAI Jia-chen, YUAN Meng-qi, GAO Bo, YU Yi-ting. Progress of tunable micro-nano filtering structures[J]. Chinese Optics, 2021, 14(5): 1069-1088. doi: 10.37188/CO.2021-0044
Citation: YU Xiao-chang, XU Ya-qing, CAI Jia-chen, YUAN Meng-qi, GAO Bo, YU Yi-ting. Progress of tunable micro-nano filtering structures[J]. Chinese Optics, 2021, 14(5): 1069-1088. doi: 10.37188/CO.2021-0044

Progress of tunable micro-nano filtering structures

doi: 10.37188/CO.2021-0044
Funds:  Supported by The Science, Technology and Innovation Commission of Shenzhen Municipality (No. JCYJ20180508151936092); National Natural Science Foundation of China (No. 51975483); Key Research and Development Project of Shaanxi Province (No. 2020ZDLGY01-03); Key Project of Ningbo Natural Science Foundation (No. 202003N4033); Peak Experience Project of Northwestern Polytechnical University (No. 201912); Open Foundation Project of the Key Laboratory of Spectroscopic Imaging of the Chinese Academy of Sciences (No. LSIT201912W)
More Information
  • Corresponding author: yyt@nwpu.edu.cn
  • Received Date: 2021-02-18
  • Rev Recd Date: 2021-03-18
  • Available Online: 2021-05-15
  • Publish Date: 2021-09-18
  • Because of the large size and immobility working modes, traditional spectral imaging systems struggle to meet increasingly complex practical needs. Tunable micro-nano filtering structures show unique advantages for their lighter weight and greater flexibility, so they are promising candidates for achieving adaptive and intelligent operation in the future. This article summarizes a variety of tunable filtering methodologies and their operational principles both in domestic and foreign research within the last several years. It illustrates static tunable methods such as utilizing liquid crystal and phase-change materials, some dynamic tunable filtering structures such as Fabry-Pérot cavity, micro-nano tunable grating as well as some driving approaches like mechanical stretching, electrostatic driving, optical driving, etc. Meanwhile, this article also introduces some frontier researches based on microfluidic chips and graphene. In the end, it discusses the barriers, challenges and future trends of development for tunable micro-nano filtering structures.
  • loading
  • [1]
    吴正容, 白广周. 美国弹道导弹预警探测识别技术发展分析[J]. 飞行器测控学报,2016,35(6):415-421.

    WU ZH R, BAI G ZH. Analysis of US ballistic missile warning and recognition technology development[J]. Journal of Spacecraft TT &C Technology, 2016, 35(6): 415-421. (in Chinese)
    余晓畅, 赵建村, 虞益挺. 像素级光学滤波-探测集成器件的研究进展[J]. 光学 精密工程,2019,27(5):999-1012. doi: 10.3788/OPE.20192705.0999

    YU X CH, ZHAO J C, YU Y T. Research progress of pixel-level integrated devices for spectral imaging[J]. Optics and Precision Engineering, 2019, 27(5): 999-1012. (in Chinese) doi: 10.3788/OPE.20192705.0999
    DICKSON W, WURTZ G A, EVANS P R, et al. Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal[J]. Nano Letters, 2008, 8(1): 281-286. doi: 10.1021/nl072613g
    KNIGHT M W, KING N S, LIU L F, et al. Aluminum for plasmonics[J]. ACS Nano, 2014, 8(1): 834-840. doi: 10.1021/nn405495q
    TSENG M L, YANG J, SEMMLINGER M, et al. Two-dimensional active tuning of an aluminum plasmonic array for full-spectrum response[J]. Nano Letters, 2017, 17(10): 6034-6039. doi: 10.1021/acs.nanolett.7b02350
    HSIAO V K S, ZHENG Y B, JULURI B K, et al. Light-driven plasmonic switches based on Au nanodisk arrays and photoresponsive liquid crystals[J]. Advanced Materials, 2008, 20(18): 3528-3532. doi: 10.1002/adma.200800045
    SI G Y, ZHAO Y H, LEONG E S P, et al. Liquid-crystal-enabled active plasmonics: a review[J]. Materials, 2014, 7(2): 1296-1317. doi: 10.3390/ma7021296
    HSIAO Y C, SU CH W, YANG Z H, et al. Electrically active nanoantenna array enabled by varying the molecular orientation of an interfaced liquid crystal[J]. RSC Advances, 2016, 6(87): 84500-84504. doi: 10.1039/C6RA11428H
    CHEN K P, YE S CH, YANG CH Y, et al. Electrically tunable transmission of gold binary-grating metasurfaces integrated with liquid crystals[J]. Optics Express, 2016, 24(15): 16815-16821. doi: 10.1364/OE.24.016815
    GILARDI G, DONISI D, SERPENGÜZEL A, et al. Liquid-crystal tunable filter based on sapphire microspheres[J]. Optics Letters, 2009, 34(21): 3253-3255. doi: 10.1364/OL.34.003253
    KOMAR A, FANG ZH, BOHN J, et al. Electrically tunable all-dielectric optical metasurfaces based on liquid crystals[J]. Applied Physics Letters, 2017, 110(7): 071109. doi: 10.1063/1.4976504
    LIU Y J, SI G Y, LEONG E S P, et al. Light-driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays[J]. Advanced Materials, 2012, 24(23): OP131-OP135.
    FRANKLIN D, CHEN Y, VAZQUEZ-GUARDADO A, et al. Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces[J]. Nature Communications, 2015, 6: 7337. doi: 10.1038/ncomms8337
    XIE Z W, YANG J H, VASHISTHA V, et al. Liquid-crystal tunable color filters based on aluminum metasurfaces[J]. Optics Express, 2017, 25(24): 30764-30770. doi: 10.1364/OE.25.030764
    吴梦, 梁西银, 孙对兄, 等. 基于表面等离子激元的非对称矩形环腔电可调滤波器设计[J]. 光学学报,2020,40(14):1423001. doi: 10.3788/AOS202040.1423001

    WU M, LIANG X Y, SUN D X, et al. Design of asymmetric rectangular ring resonance cavity electrically adjustable filter based on surface plasmon polaritons[J]. Acta Optica Sinica, 2020, 40(14): 1423001. (in Chinese) doi: 10.3788/AOS202040.1423001
    BARTHOLOMEW R, WILLIAMS C, KHAN A, et al. Plasmonic nanohole electrodes for active color tunable liquid crystal transmissive pixels[J]. Optics Letters, 2017, 42(14): 2810-2813. doi: 10.1364/OL.42.002810
    曹水艳. 表面等离子体结构聚焦和吸收特性的研究[D]. 长春: 中国科学院研究生院(长春光学精密机械与物理研究所), 2013.

    CAO SH Y. Study on the property of focusing and absorption of plasmonic nanostrucutres[D]. Changchun: Changchun Institute of Optics, Fine Mehcanics and Physics, Chinese Academy of Sciences, 2013. (in Chinese)
    LEE Y, PARK M K, KIM S, et al. Electrical broad tuning of plasmonic color filter employing an asymmetric-lattice nanohole array of metasurface controlled by polarization rotator[J]. ACS Photonics, 2017, 4(8): 1954-1966. doi: 10.1021/acsphotonics.7b00249
    DRIENCOURT L, FEDERSPIEL F, KAZAZIS D, et al. Electrically tunable multicolored filter using birefringent plasmonic resonators and liquid crystals[J]. ACS Photonics, 2020, 7(2): 444-453. doi: 10.1021/acsphotonics.9b01404
    RYU S H, YOON D K. Switchable plasmonic film using nanoconfined liquid crystals[J]. ACS Applied Materials &Interfaces, 2017, 9(29): 25057-25061.
    樊丽娜, 马军山. 兼具反射和透射模式的共振波导光栅滤波器的设计[J]. 中国光学,2020,13(5):1147-1157. doi: 10.37188/CO.2020-0072

    FAN L N, MA J SH. Design of resonant waveguide grating filter with reflection and transmission modes[J]. Chinese Optics, 2020, 13(5): 1147-1157. (in Chinese) doi: 10.37188/CO.2020-0072
    REN ZH B, SUN Y H, LIN Z H, et al. Tunable guided-mode resonance filters for multi-primary colors based on polarization rotation[J]. IEEE Photonics Technology Letters, 2018, 30(21): 1858-1861. doi: 10.1109/LPT.2018.2870059
    CHANG L M, YIN CH C, LIN C Y, et al. Tunable polarizing reflector based on liquid crystal-clad guided-mode resonator[J]. Liquid Crystals, 2021, 48(6): 806-811. doi: 10.1080/02678292.2020.1817586
    LIN T Y, LIN J H, LIN J D, et al. All-optical and polarization-independent tunable guided-mode resonance filter based on a dye-doped liquid crystal incorporated with photonic crystal nanostructure[J]. Journal of Lightwave Technology, 2020, 38(4): 820-826. doi: 10.1109/JLT.2019.2950098
    赵文宇. 超表面微纳结构的相位操控及模式耦合特性[D]. 哈尔滨: 哈尔滨工业大学, 2017.

    ZHAO W Y. Phase manipulation and mode coupling in metasurface nanostructures[D]. Harbin: Harbin Institute of Technology, 2017. (in Chinese)
    周紫葳. 液晶基可调谐全介质超表面的研究[D]. 北京: 北京邮电大学, 2019.

    ZHOU Z W. Tunable all-dielectric metasurfaces based on liquid crystals[D]. Beijing: Beijing University of Posts and Telecommunications, 2019. (in Chinese)
    张庆. 纳米尺度光场调控: 全介质超表面及二维材料极化激元[D]. 绵阳: 中国工程物理研究院, 2019.

    ZHANG Q. Light Manipulation at the nanoscale: all dielectric metasurfaces and two-dimensional material polaritons[D]. Mianyang: China Academy of Engineering Physics, 2019. (in Chinese)
    YU N F, GENEVET P, KATS M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333-337. doi: 10.1126/science.1210713
    SUN M Y, XU X W, SUN X W, et al. Efficient visible light modulation based on electrically tunable all dielectric metasurfaces embedded in thin-layer nematic liquid crystals[J]. Scientific Reports, 2019, 9(1): 8673. doi: 10.1038/s41598-019-45091-5
    SAUTTER J, STAUDE I, DECKER M, et al. Active tuning of all-dielectric metasurfaces[J]. ACS Nano, 2015, 9(4): 4308-4315. doi: 10.1021/acsnano.5b00723
    PARK J W, EOM S H, LEE H, et al. Optical properties of pseudobinary GeTe, Ge2Sb2Te5, GeSb2Te4, GeSb4Te7, and Sb2Te3 from ellipsometry and density functional theory[J]. Physical Review B, 2009, 80(11): 115209. doi: 10.1103/PhysRevB.80.115209
    KARVOUNIS A, GHOLIPOUR B, MACDONALD K F, et al. All-dielectric phase-change reconfigurable metasurface[J]. Applied Physics Letters, 2016, 109(5): 051103. doi: 10.1063/1.4959272
    王曼婷. 基于相变材料的光调制器设计[D]. 北京: 北京邮电大学, 2019.

    WANG M T. Design of optical modulator based on phase change materials[D]. Beijing: Beijing University of Posts and Telecommunications, 2019. (in Chinese)
    陈婧. 纳米尺度下锗锑碲相变材料制备及光电性质[D]. 南京: 南京大学, 2014.

    CHEN J. The optical and electrical properties of Ge2Sb2Te5 thin films in nanoscale[D]. Nanjing: Nanjing University, 2014. (in Chinese)
    HOSSEINI P, WRIGHT C D, BHASKARAN H. An optoelectronic framework enabled by low-dimensional phase-change films[J]. Nature, 2014, 511(7508): 206-211. doi: 10.1038/nature13487
    RÍOS C, STEGMAIER M, HOSSEINI P, et al. Integrated all-photonic non-volatile multi-level memory[J]. Nature Photonics, 2015, 9(11): 725-732. doi: 10.1038/nphoton.2015.182
    CHENG ZH G, RÍOS C, PERNICE W H P, et al. On-chip photonic synapse[J]. Science Advances, 2017, 3(9): e1700160. doi: 10.1126/sciadv.1700160
    WANG Q, ROGERS E T F, GHOLIPOUR B, et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials[J]. Nature Photonics, 2016, 10(1): 60-65. doi: 10.1038/nphoton.2015.247
    ZHANG W W, QI H, SUN A T, et al. Periodic trapezoidal VO2-Ge multilayer absorber for dynamic radiative cooling[J]. Optics Express, 2020, 28(14): 20609-20623. doi: 10.1364/OE.396171
    LEI L, LOU F, TAO K Y, et al. Tunable and scalable broadband metamaterial absorber involving VO2-based phase transition[J]. Photonics Research, 2019, 7(7): 734-741. doi: 10.1364/PRJ.7.000734
    DRISCOLL T, BASOV D N, STARR A F, et al. Free-space microwave focusing by a negative-index gradient lens[J]. Applied Physics Letters, 2006, 88(8): 081101. doi: 10.1063/1.2174088
    DRISCOLL T, PALIT S, QAZILBASH M M, et al. Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide[J]. Applied Physics Letters, 2008, 93(2): 024101. doi: 10.1063/1.2956675
    周良. 开环谐振器在滤波器及天线中的应用研究[D]. 南京: 南京航空航天大学, 2011.

    ZHOU L. Research on split-ring resonator for filter and antenna applications[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011. (in Chinese)
    CHAE J Y, LEE D, LEE D W, et al. Direct transfer of thermochromic tungsten-doped vanadium dioxide thin-films onto flexible polymeric substrates[J]. Applied Surface Science, 2021, 545: 148937. doi: 10.1016/j.apsusc.2021.148937
    孙洪君, 王敏焕, 边继明, 等. MBE技术蓝宝石衬底上生长VO2薄膜及其太赫兹和金属–绝缘体相变特性研究[J]. 无机材料学报,2017,32(4):437-442. doi: 10.15541/jim20160456

    SUN H J, WANG M H, BIAN J M, et al. Terahertz and metal-insulator transition properties of VO2 film grown on sapphire substrate with MBE[J]. Journal of Inorganic Materials, 2017, 32(4): 437-442. (in Chinese) doi: 10.15541/jim20160456
    LI ZH Y, ZHOU Y, QI H, et al. Correlated perovskites as a new platform for super-broadband-tunable photonics[J]. Advanced Materials, 2016, 28(41): 9117-9125. doi: 10.1002/adma.201601204
    LIN J, LAI M L, DOU L T, et al. Thermochromic halide perovskite solar cells[J]. Nature Materials, 2018, 17(3): 261-267. doi: 10.1038/s41563-017-0006-0
    钱晶, 付中玉, 李昕. 导电聚合物基电致变色器件的研究进展[J]. 化学研究与应用,2008,20(11):1397-1404. doi: 10.3969/j.issn.1004-1656.2008.11.002

    QIAN J, FU ZH Y, LI X. Research progress of electrochromic devices based on conducting polymers[J]. Chemical Research and Application, 2008, 20(11): 1397-1404. (in Chinese) doi: 10.3969/j.issn.1004-1656.2008.11.002
    DEB S K. A novel electrophotographic system[J]. Applied Optics, 1969, 8 Suppl 1: 192-195.
    HAUCH A, GEORG A, BAUMGÄRTNER S, et al. New photoelectrochromic device[J]. Electrochimica Acta, 2001, 46(13-14): 2131-2136. doi: 10.1016/S0013-4686(01)00391-7
    YANG P H, SUN P, CHAI ZH SH, et al. Large-scale fabrication of pseudocapacitive glass windows that combine electrochromism and energy storage[J]. Angewandte Chemie International Edition, 2014, 53(44): 11935-11939. doi: 10.1002/anie.201407365
    YAMAZAKI S, ISOYAMA K, SHIMIZU D. Visualization of ultraviolet irradiation using WO3-cellulose derivatives composite film[J]. Optical Materials, 2020, 106: 109929. doi: 10.1016/j.optmat.2020.109929
    CHEN Y Q, DUAN X Y, MATUSCHEK M, et al. Dynamic color displays using stepwise cavity resonators[J]. Nano Letters, 2017, 17(9): 5555-5560. doi: 10.1021/acs.nanolett.7b02336
    HANSON G W. Corrections to “dyadic green's functions for an anisotropic, non-local model of biased graphene” [Mar 08 747-757][J]. IEEE Transactions on Antennas And Propagation, 2012, 60(12): 6065. doi: 10.1109/TAP.2012.2214020
    HANSON G W. Erratum: “Dyadic Green's functions and guided surface waves for a surface conductivity model of graphene” [J. Appl. Phys. 103, 064302 (2008)][J]. Journal of Applied Physics, 2013, 113(2): 029902. doi: 10.1063/1.4776680
    CHEN P Y, ALÙ A. Terahertz metamaterial devices based on graphene nanostructures[J]. IEEE Transactions on Terahertz Science And Technology, 2013, 3(6): 748-756. doi: 10.1109/TTHZ.2013.2285629
    DAWLATY J M, SHIVARAMAN S, STRAIT J, et al. Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible[J]. Applied Physics Letters, 2008, 93(13): 131905. doi: 10.1063/1.2990753
    CHENG H, CHEN SH Q, YU P, et al. Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial[J]. Applied Physics Letters, 2013, 103(22): 223102. doi: 10.1063/1.4833757
    LIU Y, ZHONG R B, LIAN ZH, et al. Dynamically tunable band stop filter enabled by the metal-graphene metamaterials[J]. Scientific Reports, 2018, 8: 2828. doi: 10.1038/s41598-018-21085-7
    汤炳书, 孙成祥. 多层石墨烯纳米膜的中红外窄带滤波特性调节[J]. 光学 精密工程,2019,27(12):2549-2554. doi: 10.3788/OPE.20192712.2549

    TANG B SH, SUN CH X. Adjustment for mid-infrared narrow-bandfiltering charcteristic in multilayer graphene nanofilms[J]. Optics and Precision Engineering, 2019, 27(12): 2549-2554. (in Chinese) doi: 10.3788/OPE.20192712.2549
    余明芬, 曾洪梅, 张桦, 等. 微流控芯片技术研究概况及其应用进展[J]. 植物保护,2014,40(4):1-8. doi: 10.3969/j.issn.0529-1542.2014.04.001

    YU M F, ZENG H M, ZHANG H, et al. Research progress in microfluidics and its applications[J]. Plant Protection, 2014, 40(4): 1-8. (in Chinese) doi: 10.3969/j.issn.0529-1542.2014.04.001
    毛强, 唐雄贵, 孟方, 等. 基于亚波长光栅结构的微流控可调窄带滤波器设计与分析[J]. 激光与光电子学进展,2019,56(4):042301.

    MAO Q, TANG X G, MENG F, et al. Tunable narrow-band filter with sub-wavelength grating structure by micro-optofluidic technique[J]. Laser &Optoelectronics Progress, 2019, 56(4): 042301. (in Chinese)
    SUN SH, YANG W H, ZHANG CH, et al. Real-time tunable colors from microfluidic reconfigurable all-dielectric metasurfaces[J]. ACS Nano, 2018, 12(3): 2151-2159. doi: 10.1021/acsnano.7b07121
    WU P C, ZHU W M, SHEN ZH X, et al. Broadband wide-angle multifunctional polarization converter via liquid-metal-based metasurface[J]. Advanced Optical Materials, 2017, 5(7): 1600938. doi: 10.1002/adom.201600938
    KIM H K, LEE D, LIM S. A fluidically tunable metasurface absorber for flexible large-scale wireless ethanol sensor applications[J]. Sensors, 2016, 16(8): 1246. doi: 10.3390/s16081246
    MENG Q H, CHEN S H, LAI J J, et al. Multi-physics simulation and fabrication of a compact 128× 128 micro-electro-mechanical system Fabry-Perot cavity tunable filter array for infrared hyperspectral imager[J]. Applied Optics, 2015, 54(22): 6850-6856. doi: 10.1364/AO.54.006850
    PEERLINGS J, DEHE A, VOGT A, et al. Long resonator micromachined tunable GaAs-AlAs Fabry-Perot filter[J]. IEEE Photonics Technology Letters, 1997, 9(9): 1235-1237. doi: 10.1109/68.618489
    MANNILA R, NÄSILÄ A, VIHERKANTO K, et al. Spectral imager based on Fabry-Perot interferometer for Aalto-1 nanosatellite[J]. Proceedings of SPIE, 2013, 8870: 887002. doi: 10.1117/12.2023299
    EBERMANN M, NEUMANN N, HILLER K, et al. Tunable MEMS Fabry-Perot filters for infrared microspectrometers: a review[J]. Proceedings of SPIE, 2016, 9760: 97600H.
    MALINEN J, RISSANEN A, SAARI H, et al. Advances in miniature spectrometer and sensor development[J]. Proceedings of SPIE, 2014, 9101: 91010C.
    LIN Y SH, DAI J, ZENG ZH Y, et al. Metasurface color filters using Aluminum and Lithium Niobate configurations[J]. Nanoscale Research Letters, 2020, 15(1): 77. doi: 10.1186/s11671-020-03310-3
    HUNG E S, SENTURIA S D. Extending the travel range of analog-tuned electrostatic actuators[J]. Journal of Microelectromechanical Systems, 1999, 8(4): 497-505. doi: 10.1109/84.809065
    周南权, 陶纯匡, 崔胜利. 基于光栅光阀可调谐半导体激光器外腔结构的设计研究[J]. 激光杂志,2008,29(3):8-9. doi: 10.3969/j.issn.0253-2743.2008.03.004

    ZHOU N Q, TAO CH K, CUI SH L. The design of external cavity structure in tunable semiconductor laser based on grating light valve[J]. Laser Journal, 2008, 29(3): 8-9. (in Chinese) doi: 10.3969/j.issn.0253-2743.2008.03.004
    XU M J, HUANG Y SH, NI ZH J, et al. Two-dimensional stretchable blazed wavelength-tunable grating based on PDMS[J]. Applied Optics, 2020, 59(30): 9614-9620. doi: 10.1364/AO.402461
    YU W, GAO SH Q, LIN Y SH, et al. MEMS-based tunable grating coupler[J]. IEEE Photonics Technology Letters, 2019, 31(2): 161-164. doi: 10.1109/LPT.2018.2887254
    LUO F, YEH T F. Tuning fiber bragg gratings by deformable slides[J]. Journal of Lightwave Technology, 2018, 36(17): 3746-3751. doi: 10.1109/JLT.2018.2850354
    AXELROD R, SHACHAM-DIAMAND Y, GOLUB M A. Tunable resonance-domain diffraction gratings based on electrostrictive polymers[J]. Applied Optics, 2017, 56(7): 1817-1825. doi: 10.1364/AO.56.001817
    WANG F, JIA SH H, WANG Y L, et al. Near-infrared light-controlled tunable grating based on graphene/elastomer composites[J]. Optical Materials, 2018, 76: 117-124. doi: 10.1016/j.optmat.2017.12.004
    燕斌, 苑伟政, 虞益挺, 等. 一种新型SOG周期可调光栅的制作及其衍射性能测试[J]. 光学学报,2010,30(11):3128-3132. doi: 10.3788/AOS20103011.3128

    YAN B, YUAN W ZH, YU Y T, et al. Fabrication and experimental investigation of diffraction characteristics for a pitch-tunable grating based on SOG process[J]. Acta Optica Sinica, 2010, 30(11): 3128-3132. (in Chinese) doi: 10.3788/AOS20103011.3128
    ERRANDO-HERRANZ C, LE THOMAS N, GYLFASON K B. Low-power optical beam steering by microelectromechanical waveguide gratings[J]. Optics Letters, 2019, 44(4): 855-858. doi: 10.1364/OL.44.000855
    李晓莹, 吴焱, 虞益挺, 等. 闪耀角可调微型可编程光栅的优化设计与仿真模拟[J]. 光子学报,2016,45(4):0405002. doi: 10.3788/gzxb20164504.0405002

    LI X Y, WU Y, YU Y T, et al. Optimization design and numerical simulation of micro programmable gratings with tunable blazed angle[J]. Acta Photonica Sinica, 2016, 45(4): 0405002. (in Chinese) doi: 10.3788/gzxb20164504.0405002
    CHEN L H, BUSFIELD J J C, CARPI F. Electrically tunable directional light scattering from soft thin membranes[J]. Optics Express, 2020, 28(14): 20669-20685. doi: 10.1364/OE.392015
    VALENTE J, OU J Y, PLUM E, et al. A magneto-electro-optical effect in a plasmonic nanowire material[J]. Nature Communications, 2015, 6(1): 7021. doi: 10.1038/ncomms8021
    SHENG W J, PENG G D, YANG N, et al. Suppression of sweeping fluctuation of Fabry-Perot filter in fiber Bragg grating interrogation using PSO-based self-adaptive sampling[J]. Mechanical Systems and Signal Processing, 2020, 142: 106724. doi: 10.1016/j.ymssp.2020.106724
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article views (555) PDF downloads(96) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint