Volume 14 Issue 5
Sep.  2021
Turn off MathJax
Article Contents
SHI Xiao-gang, XUE Zheng-hui, LI Hui-hui, WANG Bing-jie, LI Shuang-long. Review of augmented reality display technology[J]. Chinese Optics, 2021, 14(5): 1146-1161. doi: 10.37188/CO.2021-0032
Citation: SHI Xiao-gang, XUE Zheng-hui, LI Hui-hui, WANG Bing-jie, LI Shuang-long. Review of augmented reality display technology[J]. Chinese Optics, 2021, 14(5): 1146-1161. doi: 10.37188/CO.2021-0032

Review of augmented reality display technology

doi: 10.37188/CO.2021-0032
Funds:  Supported by Beijing Municipal Science & Technology Commission(No. Z191100004819005)
More Information
  • Corresponding author: zhxue@bit.edu.cn
  • Received Date: 2021-02-01
  • Rev Recd Date: 2021-03-30
  • Available Online: 2021-05-15
  • Publish Date: 2021-09-18
  • Augmented reality (AR) display technology has developed rapidly in recent years, and has become a research hotspot and development focus of the global information technology industry. It has the potential to revolutionize the ways we perceive and interact with various digital information. Recent advances in micro-displays and optical technologies offer new development directions to further advance AR display technology. This review analyzes the optical requirements of human visual systems for AR head-mounted displays and compares them with current specifications of AR head-mounted displays to demonstrate their current levels of development and main challenge. The basic principles and parameters of various micro-displays and optical combiners in AR head-mounted displays are introduced to explain their advantages and practicability, and their development trends are summarized.
  • loading
  • [1]
    CARMIGNIANI J, FURHT B, ANISETTI M, et al. Augmented reality technologies, systems and applications[J]. Multimedia Tools and Applications, 2011, 51(1): 341-377. doi: 10.1007/s11042-010-0660-6
    何泽浩, 隋晓萌, 赵燕, 等. 基于全息光学的虚拟现实与增强现实技术进展[J]. 科技导报,2018,36(9):8-17.

    HE Z H, SUI X M, ZHAO Y, et al. The development trend of virtual reality and augmented reality technology based on holographic optics[J]. Science &Technology Review, 2018, 36(9): 8-17. (in Chinese)
    范丽亚, 马介渊, 张克发, 等. 增强现实硬件产业的发展及展望[J]. 科技导报,2019,37(15):114-124.

    FAN L Y, MA J Y, ZHANG K F, et al. The development status and prospect of augmented reality hardware industry[J]. Science &Technology Review, 2019, 37(15): 114-124. (in Chinese)
    CHANG CH L, BANG K, WETZSTEIN G, et al. Toward the next-generation VR/AR optics: a review of holographic near-eye displays from a human-centric perspective[J]. Optica, 2020, 7(11): 1563-1578. doi: 10.1364/OPTICA.406004
    WHEELWRIGHT B, SULAI Y, GENG Y, et al. Field of view: not just a number[J]. Proceedings of SPIE, 2018, 10676: 1067604.
    ZHAN T, YIN K, XIONG J H, et al. Augmented reality and virtual reality displays: perspectives and challenges[J]. iScience, 2020, 23(8): 101397. doi: 10.1016/j.isci.2020.101397
    CURCIO C A, SLOAN K R, KALINA R E, et al. Human photoreceptor topography[J]. Journal of Comparative Neurology, 1990, 292(4): 497-523. doi: 10.1002/cne.902920402
    DOBROWOLSKI J A, SULLIVAN B T, BAJCAR R C. Optical interference, contrast-enhanced electroluminescent device[J]. Applied Optics, 1992, 31(28): 5988-5996. doi: 10.1364/AO.31.005988
    CHEN H W, TAN G J, WU S T. Ambient contrast ratio of LCDs and OLED displays[J]. Optics Express, 2017, 25(26): 33643-33656. doi: 10.1364/OE.25.033643
    LEE Y H, ZHAN T, WU S T. Prospects and challenges in augmented reality displays[J]. Virtual Reality &Intelligent Hardware, 2019, 1(1): 10-20.
    SCHOWENGERDT B T, LIN D M, ST HILAIRE P. Multi-layer diffractive eyepiece: US, 2018052277A1[P]. 2018-02-22.
    HOFFMAN D M, GIRSHICK A R, AKELEY K, et al. Vergence-accommodation conflicts hinder visual performance and cause visual fatigue[J]. Journal of Vision, 2008, 8(3): 33. doi: 10.1167/8.3.33
    KRAMIDA G. Resolving the vergence-accommodation conflict in head-mounted displays[J]. IEEE Transactions on Visualization and Computer Graphics, 2016, 22(7): 1912-1931. doi: 10.1109/TVCG.2015.2473855
    ZHAN T, XIONG J H, ZOU J Y, et al. Multifocal displays: review and prospect[J]. PhotoniX, 2020, 1: 10. doi: 10.1186/s43074-020-00010-0
    TAY S, BLANCHE P A, VOORAKARANAM R, et al. An updatable holographic three-dimensional display[J]. Nature, 2008, 451(7179): 694-698. doi: 10.1038/nature06596
    YARAŞ F, KANG H, ONURAL L. State of the art in holographic displays: a survey[J]. Journal of Display Technology, 2010, 6(10): 443-454. doi: 10.1109/JDT.2010.2045734
    WETZSTEIN G, LANMAN D, HIRSCH M, et al. Tensor displays: compressive light field synthesis using multilayer displays with directional backlighting[J]. ACM Transactions on Graphics, 2012, 31(4): 80.
    YUUKI A, ITOGA K, SATAKE T. A new Maxwellian view display for trouble-free accommodation[J]. Journal of the Society for Information Display, 2012, 20(10): 581-588. doi: 10.1002/jsid.122
    STEVENS R E, RHODES D P, HASNAIN A, et al. Varifocal technologies providing prescription and VAC mitigation in HMDs using Alvarez lenses[J]. Proceedings of SPIE, 2018, 10676: 106760J.
    DUNN D, TIPPETS C, TORELL K, et al. Wide field of view varifocal near-eye display using see-through deformable membrane mirrors[J]. IEEE Transactions on Visualization and Computer Graphics, 2017, 23(4): 1322-1331. doi: 10.1109/TVCG.2017.2657058
    刘澍鑫, 李燕, 苏翼凯. 基于液晶散射膜的多平面增强现实显示[J]. 液晶与显示,2020,35(7):725-732.

    LIU SH X, LI Y, SU Y K. Review on multi-plane augmented reality display based on liquid crystal scattering films[J]. Chinese Journal of Liquid Crystals and Displays, 2020, 35(7): 725-732. (in Chinese)
    LIU SH, HUA H. A systematic method for designing depth-fused multi-focal plane three-dimensional displays[J]. Optics Express, 2010, 18(11): 11562-11573. doi: 10.1364/OE.18.011562
    ZHAN T, LEE Y H, WU S T. High-resolution additive light field near-eye display by switchable Pancharatnam-Berry phase lenses[J]. Optics Express, 2018, 26(4): 4863-4872. doi: 10.1364/OE.26.004863
    LIU SH X, LI Y, ZHOU P CH, et al. Full-color multi-plane optical see-through head‐mounted display for augmented reality applications[J]. Journal of the Society for Information Display, 2018, 26(12): 687-693. doi: 10.1002/jsid.739
    HUANG Y G, LIAO E, CHEN R, et al. Liquid-crystal-on-silicon for augmented reality displays[J]. Applied Sciences, 2018, 8(12): 2366. doi: 10.3390/app8122366
    KIM J, KOMANDURI R K, LAWLER K F, et al. Efficient and monolithic polarization conversion system based on a polarization grating[J]. Applied Optics, 2012, 51(20): 4852-4857. doi: 10.1364/AO.51.004852
    DU T, FAN F, TAM A M W, et al. Complex nanoscale-ordered liquid crystal polymer film for high transmittance holographic polarizer[J]. Advanced Materials, 2015, 27(44): 7191-7195. doi: 10.1002/adma.201502395
    WANG CH, HSU R. 18‐4: Invited Paper: Digital modulation on micro display and spatial light modulator[J]. SID Symposium Digest of Technical Papers, 2017, 48(1): 238-241. doi: 10.1002/sdtp.11678
    KANAZAWA M, HAMADA K, KONDOH I, et al. An ultrahigh-definition display using the pixel-offset method[J]. Journal of the Society for Information Display, 2004, 12(1): 93-103. doi: 10.1889/1.1824245
    STERLING R. JVC D-ILA high resolution, high contrast projectors and applications[C]. Proceedings of the 2008 Workshop on Immersive Projection Technologies/Emerging Display Technologiges, ACM, 2008: 1-6.
    HUANG Y P, LIN F CH, SHIEH H P D. Eco-displays: the color LCD's without color filters and polarizers[J]. Journal of Display Technology, 2011, 7(12): 630-632. doi: 10.1109/JDT.2011.2166056
    LEE Y H, ZHAN T, WU S T. Enhancing the resolution of a near-eye display with a Pancharatnam-Berry phase detector[J]. Optics Letters, 2017, 42(22): 4732-4735.
    PETTITT G, FERRI J, THOMPSON J. 47.1: invited paper: practical application of TI DLP® technology in the next generation head-up display system[J]. SID Symposium Digest of Technical Papers, 2015, 46(1): 700-703. doi: 10.1002/sdtp.10269
    FIRTH M. Turning automotive windows into the Ultimate HMIs[J]. Information Display, 2020, 36(4): 16-20. doi: 10.1002/msid.1129
    MOTOYAMA Y, SUGIYAMA K, TANAKA H, et al. High‐efficiency OLED microdisplay with microlens array[J]. Journal of the Society for Information Display, 2019, 27(6): 354-360. doi: 10.1002/jsid.784
    GHOSH A, DONOGHUE E P, KHAYRULLIN I, et al. 18-1: invited paper: ultra-high-brightness 2K x 2K Full-color OLED microdisplay using direct patterning of OLED emitters[J]. SID Symposium Digest of Technical Papers, 2017, 48(1): 226-229. doi: 10.1002/sdtp.11674
    LIN J Y, JIANG H X. Development of microLED[J]. Applied Physics Letters, 2020, 116(10): 100502. doi: 10.1063/1.5145201
    HUANG Y, HSIANG E L, DENG M Y, et al. Mini-LED, Micro-LED and OLED displays: Present status and future perspectives[J]. Light:Science &Applications, 2020, 9(1): 105.
    韩洪松, 齐爱想, 刘俊国, 等. Micro-LED在机载上的应用[J]. 液晶与显示,2021,36(3):439-447. doi: 10.37188/CJLCD.2020-0096

    HAN H S, QI A X, LIU J G, et al. Application of Micro-LED technology in airborne display[J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(3): 439-447. (in Chinese) doi: 10.37188/CJLCD.2020-0096
    QUESNEL E, LAGRANGE A, VIGIER M, et al. Dimensioning a full color LED microdisplay for augmented reality headset in a very bright environment[J]. Journal of the Society for Information Display, 2021, 29(1): 3-16. doi: 10.1002/jsid.884
    郝斌, 赵文武, 郁建元, 等. 荧光粉Ba5-3x/2B4O11:xEu3+的制备及发光性能[J]. 应用化学,2019,36(5):548-553. doi: 10.11944/j.issn.1000-0518.2019.05.180276

    HAO B, ZHAO W W, YU J Y, et al. Preparation and luminescence property of Ba5-3x/2B4O11xEu3+ phosphor[J]. Chinese Journal of Applied Chemistry, 2019, 36(5): 548-553. (in Chinese) doi: 10.11944/j.issn.1000-0518.2019.05.180276
    刘伟强, 崔荣朕, 武瑞霞, 等. 蓝色延迟荧光材料及器件的研究进展[J]. 应用化学,2019,36(1):1-9. doi: 10.11944/j.issn.1000-0518.2019.01.180071

    LIU W Q, CUI R ZH, WU R X, et al. Recent progress on blue delayed fluorescent materials and devices[J]. Chinese Journal of Applied Chemistry, 2019, 36(1): 1-9. (in Chinese) doi: 10.11944/j.issn.1000-0518.2019.01.180071
    黄国斌, 骆登峰, 张茂升. 多色高发光效率CsPbX3(X=Cl, Br, I)钙钛矿量子点的制备及其在发光二极管中的应用[J]. 应用化学,2019,36(8):932-938. doi: 10.11944/j.issn.1000-0518.2019.08.190016

    HUANG G B, LUO D F, ZHANG M SH. Preparation of CsPbX3(X=Cl, Br, I) perovskite quantum dots with multicolor and high luminescence efficiency and its application in light emitting diode devices[J]. Chinese Journal of Applied Chemistry, 2019, 36(8): 932-938. (in Chinese) doi: 10.11944/j.issn.1000-0518.2019.08.190016
    ALEXANDER S, BAILEY M, MORRISON V R, et al.. Systems, devices, and methods for eyebox expansion in wearable heads-up displays: US, 9989764[P]. 2018-06-05.
    HAAS G. 40-2: invited paper: microdisplays for augmented and virtual reality[J]. SID Symposium Digest of Technical Papers, 2018, 49(1): 506-509. doi: 10.1002/sdtp.12445
    CADO H, MOLITON R. Polarization splitter, method of manufacturing same and ophthalmic lens incorporating projection inserts containing it: US, 20040136082[P]. 2004-07-15.
    MARTINEZ M A, SAEEDI E, AMIRPARVIZ B. Head-mounted display including integrated projector: US, 9128285[P]. 2015-09-08.
    WANG J H, LIANG Y CH, XU M. Design of a see-through head-mounted display with a freeform surface[J]. Journal of the Optical Society of Korea, 2015, 19(6): 614-618. doi: 10.3807/JOSK.2015.19.6.614
    TAKAHASHI K. Head or face mounted image display apparatus: US, 5701202[P]. 1997-12-23.
    AMITAI Y. Substrate-guided optical device utilizing thin transparent layer: US, 7724443[P]. 2010-05-25.
    CHENG D W, WANG Y T, XU CH, et al. Design of an ultra-thin near-eye display with geometrical waveguide and freeform optics[J]. Optics Express, 2014, 22(17): 20705-20719. doi: 10.1364/OE.22.020705
    GU L, CHENG D W, WANG Q W, et al. Design of a two-dimensional stray-light-free geometrical waveguide head-up display[J]. Applied Optics, 2018, 57(31): 9246-9256. doi: 10.1364/AO.57.009246
    KRESS B C. Optical waveguide combiners for AR headsets: features and limitations[J]. Proceedings of SPIE, 2019, 11062: 110620J.
    刘明欢, 付秀华, 王菲, 等. 增强现实显示衍射光波导的设计[J]. 液晶与显示,2021,36(3):389-397. doi: 10.37188/CJLCD.2020-0214

    LIU M H, FU X H, WANG F, et al. Design of augmented reality display diffraction optical waveguide[J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(3): 389-397. (in Chinese) doi: 10.37188/CJLCD.2020-0214
    MUKAWA H, AKUTSU K, MATSUMURA I, et al. A full-color eyewear display using planar waveguides with reflection volume holograms[J]. Journal of the Society for Information Display, 2009, 17(3): 185-193. doi: 10.1889/JSID17.3.185
    KRESS B C, CUMMINGS W J. 11-1: invited paper: towards the ultimate mixed reality experience: hololens display architecture choices[J]. SID Symposium Digest of Technical Papers, 2017, 48(1): 127-131. doi: 10.1002/sdtp.11586
    SCHOWENGERDT B T, LIN D M, ST HILAIRE P. Multi-layer diffractive eyepiece: US, 20200284967[P]. 2020-09-10.
    GLEESON M R, SHERIDAN J T. A review of the modelling of free-radical photopolymerization in the formation of holographic gratings[J]. Journal of Optics A:Pure and Applied Optics, 2009, 11(2): 024008. doi: 10.1088/1464-4258/11/2/024008
    BRUDER F K, FÄCKE T, HAGEN R, et al. Diffractive optics with high Bragg selectivity: volume holographic optical elements in Bayfol® HX photopolymer film[J]. Proceedings of SPIE, 2015, 9626: 96260T.
    YEOM H J, KIM H J, KIM S B, et al. 3D holographic head mounted display using holographic optical elements with astigmatism aberration compensation[J]. Optics Express, 2015, 23(25): 32025-32034. doi: 10.1364/OE.23.032025
    LIN W K, MATOBA O, LIN B S, et al. Astigmatism correction and quality optimization of computer-generated holograms for holographic waveguide displays[J]. Optics Express, 2020, 28(4): 5519-5527. doi: 10.1364/OE.381193
    MAIMONE A, GEORGIOU A, KOLLIN J S. Holographic near-eye displays for virtual and augmented reality[J]. ACM Transactions on Graphics, 2017, 36(4): 85.
    SUTHERLAND R L, TONDIGLIA V P, NATARAJAN L V, et al. Electrically switchable volume gratings in polymer‐dispersed liquid crystals[J]. Applied Physics Letters, 1994, 64(9): 1074-1076. doi: 10.1063/1.110936
    FENG X Y, LU L, YAROSHCHUK O, et al. Closer look at transmissive polarization volume holograms: geometry, physics, and experimental validation[J]. Applied Optics, 2021, 60(3): 580-592. doi: 10.1364/AO.412589
    NYS I. Patterned surface alignment to create complex three-dimensional nematic and chiral nematic liquid crystal structures[J]. Liquid Crystals Today, 2020, 29(4): 65-83. doi: 10.1080/1358314X.2020.1886780
    WENG Y SH, XU D M, ZHANG Y N, et al. Polarization volume grating with high efficiency and large diffraction angle[J]. Optics Express, 2016, 24(16): 17746-17759. doi: 10.1364/OE.24.017746
    LEE Y H, YIN K, WU S T. Reflective polarization volume gratings for high efficiency waveguide-coupling augmented reality displays[J]. Optics Express, 2017, 25(22): 27008-27014. doi: 10.1364/OE.25.027008
    LEE Y H, TAN G J, ZHAN T, et al. Recent progress in Pancharatnam-Berry phase optical elements and the applications for virtual/augmented realities[J]. Optical Data Processing and Storage, 2017, 3(1): 79-88.
    SAKHNO O, GRITSAI Y, SAHM H, et al. Fabrication and performance of efficient thin circular polarization gratings with Bragg properties using bulk photo-alignment of a liquid crystalline polymer[J]. Applied Physics B, 2018, 124(3): 52. doi: 10.1007/s00340-018-6920-2
    LEE Y H, TAN G J, YIN K, et al. Compact see-through near-eye display with depth adaption[J]. Journal of the Society for Information Display, 2018, 26(2): 64-70. doi: 10.1002/jsid.635
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(20)  / Tables(2)

    Article views (1014) PDF downloads(232) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint