Volume 14 Issue 6
Nov.  2021
Turn off MathJax
Article Contents
LONG Jiang-mi, CHEN Xiao-bo, ZHAO Guo-ying, LI Yong-liang, GUO Jing-hua, WANG Jie-liang, LI Song, LIU Quan-lin. Luminescence enhancement effect of Ag@SiO2 coreshell nanoparticles on Eu-PMMA films[J]. Chinese Optics, 2021, 14(6): 1341-1347. doi: 10.37188/CO.2021-0013
Citation: LONG Jiang-mi, CHEN Xiao-bo, ZHAO Guo-ying, LI Yong-liang, GUO Jing-hua, WANG Jie-liang, LI Song, LIU Quan-lin. Luminescence enhancement effect of Ag@SiO2 coreshell nanoparticles on Eu-PMMA films[J]. Chinese Optics, 2021, 14(6): 1341-1347. doi: 10.37188/CO.2021-0013

Luminescence enhancement effect of Ag@SiO2 coreshell nanoparticles on Eu-PMMA films

doi: 10.37188/CO.2021-0013
Funds:  Supported by the National Natural Science Foundation of China (No. 51972020, No. 51472028); the Fundamental Research Funds for the Central Universities of China (No. 2017TZ01)
More Information
  • Corresponding author: chen78xb@sina.com
  • Received Date: 2021-01-27
  • Rev Recd Date: 2021-02-22
  • Available Online: 2021-05-15
  • Publish Date: 2021-11-19
  • In order to improve the luminescent properties of rare earth ions, precious metal nanoparticles were doped into rare earth luminescent materials. Metal plasma resonance can produce local electric field, which acts on the luminescence process of rare earth ions, and can achieve the luminescence enhancement. Ag@SiO2 core-shell nanoparticles can effectively control the distance between metal Ag and rare earth ions, which can not only enhance the plasmonic resonance effect, but also avoid the fluorescence quenching caused by non-radiation energy transfer when they are too close to the emission center. Firstly, the Ag@SiO2 nanoparticles with different concentrations were dropped on the quartz wafers by drop-casting method. Then, the Eu(dbm)3Phen:PMMA: dichloromethane mixed solution was spin-coated to prepare the Eu-PMMA composite film. The morphology characterization and luminescence measurement of the samples showed that the luminescence intensity of the film doped with Ag@SiO2 nanoparticles was enhanced, and the maximum enhancement factor of the measured excitation spectrum was 2.50 times, and the maximum enhancement factor of the emission spectrum was 2.15 times. The results of the fluorescence lifetime measurement of the sample indicated that the luminescence lifetime of the film containing Ag@SiO2 nanoparticles was also prolonged. The doping of Ag@SiO2 nanoparticles in the rare earth luminescent materials shows a good enhancement, and the experimental method is highly operable. It is a promising method to enhance the luminescent intensity of rare earth luminescent materials.
  • loading
  • [1]
    PATTISON P M, TSAO J Y, BRAINARD G C, et al. LEDs for photons, physiology and food[J]. Nature, 2018, 563(7732): 493-500. doi: 10.1038/s41586-018-0706-x
    LI SH H, WEI X D, LI S S, et al. Up-conversion luminescent nanoparticles for molecular imaging, cancer diagnosis and treatment[J]. International Journal of Nanomedicine, 2020, 15: 9431-9445. doi: 10.2147/IJN.S266006
    BAI X, CAPUTO G, HAO ZH D, et al. Efficient and tuneable photoluminescent boehmite hybrid nanoplates lacking metal activator centres for single-phase white LEDs[J]. Nature Communications, 2014, 5(1): 5702. doi: 10.1038/ncomms6702
    DENG R R, QIN F, CHEN R F, et al. Temporal full-colour tuning through non-steady-state upconversion[J]. Nature Nanotechnology, 2015, 10(3): 237-242. doi: 10.1038/nnano.2014.317
    WANG H Q, BATENTSCHUK M, OSVET A, et al. Rare-earth ion doped up-conversion materials for photovoltaic applications[J]. Advanced Materials, 2011, 23(22-23): 2675-2680. doi: 10.1002/adma.201100511
    WANG X J, QU Y R, ZHAO Y L, et al. Effect of the composition of lanthanide complexes on their luminescence enhancement by Ag@SiO2 core-shell nanoparticles[J]. Nanomaterials, 2018, 8(2): 98. doi: 10.3390/nano8020098
    JIANG L, MUNDOOR H, LIU Q K, et al. Electric switching of fluorescence decay in gold-silica-dye nematic nanocolloids mediated by surface plasmons[J]. ACS Nano, 2016, 10(7): 7064-7072. doi: 10.1021/acsnano.6b03216
    HUANG X Y, HAN S Y, HUANG W, et al. Enhancing solar cell efficiency: the search for luminescent materials as spectral converters[J]. Chemical Society Reviews, 2013, 42(1): 173-201. doi: 10.1039/C2CS35288E
    SUN Q C, MUNDOOR X, RIBOT J C, et al. Plasmon-enhanced energy transfer for improved upconversion of infrared radiation in doped-lanthanide nanocrystals[J]. Nano Letters, 2014, 14(1): 101-106. doi: 10.1021/nl403383w
    PARK W, LU D W, AHN S. Plasmon enhancement of luminescence upconversion[J]. Chemical Society Reviews, 2015, 44(10): 2940-2962. doi: 10.1039/C5CS00050E
    FARES H, STAMBOULI W, ELHOUICHET H, et al. Nano-silver enhanced luminescence of Er3+ ions embedded in tellurite glass, vitro-ceramic and ceramic: impact of heat treatment[J]. RSC Advances, 2016, 6(37): 31136-31145. doi: 10.1039/C6RA02095J
    KONG L J, ZHAO Y F, KONG K, et al. Fluorescence enhancement of europium nitrobenzoates by Ag@SiO2 nanoparticles in solution[J]. Journal of Luminescence, 2017, 186: 255-261.
    KUMAR D, DWIVEDI A, SRIVASTAVA M, et al. Gold nanorods modified Eu: Y2O3 dispersed PVA film as a highly sensitive plasmon-enhanced luminescence probe for excellent and fast non-enzymatic detection of H2O2 and glucose[J]. Optik, 2021, 228: 166130.
    WANG Q R, ZHANG J, SANG X, et al. Enhanced luminescence and prolonged lifetime of Eu-PMMA films based on Au@SiO2 plasmonic hetero-nanorods[J]. Journal of Luminescence, 2018, 204: 284-288. doi: 10.1016/j.jlumin.2018.08.033
    DENG W, JIN D Y, DROZDOWICZ-TOMSIA K, et al. Ultrabright Eu-doped plasmonic Ag@SiO2 nanostructures: time-gated bioprobes with single particle sensitivity and negligible background[J]. Advanced Materials, 2011, 23(40): 4649-4654. doi: 10.1002/adma.201102027
    GUNAWIDJAJA R, MYINT T, EILERS H. Synthesis of silver/SiO2/Eu∶Lu2O3 core–shell nanoparticles and their polymer nanocomposites[J]. Powder Technology, 2011, 210(2): 157-166. doi: 10.1016/j.powtec.2011.03.011
    ZHANG M D, REN Z B, DONG J, et al. Investigation on the enhanced fluorescence emission from self-assembled Au nanorod film[J]. Plasmonics, 2017, 12(6): 1841-1845. doi: 10.1007/s11468-016-0452-6
    YIN D G, CAO X ZH, ZHANG L, et al. Fabrication of a novel nanocomposite Ag/graphene@SiO2–NaLuF4∶Yb, Gd, Er for large enhancement upconversion luminescence[J]. Dalton Transactions, 2015, 44(24): 11147-11154. doi: 10.1039/C5DT01059D
    ALI U, KARIM K J B A, BUANG N A. Review of the properties and applications of poly (methyl methacrylate) (PMMA)[J]. Polymer Reviews, 2015, 55(4): 678-705. doi: 10.1080/15583724.2015.1031377
    HASHIM A, ABBAS B. Recent review on poly-methyl methacrylate (PMMA)- polystyrene (PS) blend doped with nanoparticles for modern applications[J]. Research Journal of Agriculture and Biological Sciences, 2019, 14(3): 6-12.
    GOSEKI R, ISHIZONE T. Poly(methyl methacrylate) (PMMA)[M]//KOBAYASHI S, MÜLLEN K. Encyclopedia of Polymeric Nanomaterials. Berlin, Heidelberg: Springer, 2014.
    ZHU Y SH, WANG Y H, ZHU J Y, et al. Plasmon multiwavelength-sensitized luminescence enhancement of highly transparent Ag/YVO4∶Eu3+/PMMA film[J]. Journal of Luminescence, 2018, 200: 158-163. doi: 10.1016/j.jlumin.2018.03.081
    ZHOU W, HE ZH Q, ZHAO X J. Effect of Ag nanoparticles doped in polymethyl methacrylate matrix for luminescent solar concentrator[J]. Key Engineering Materials, 2014, 599: 291-297. doi: 10.4028/www.scientific.net/KEM.599.291
    LAN H, HAN J J, CHEN H P, et al. Ag/PMMA hollow waveguide for solar energy transmission[J]. Frontiers of Chemical Science and Engineering, 2011, 5(3): 303-307. doi: 10.1007/s11705-010-0565-y
    董相廷, 何颖, 闫景辉, 等. 纳米AgBr/PMMA光致变色杂化材料制备与表征[J]. 物理化学学报,2003,19(12):1159-1162. doi: 10.3866/PKU.WHXB20031214

    DONG X T, HE Y, YAN J H, et al. Preparation and characterization of nanosized AgBr/PMMA photochromic hybrid material[J]. Acta Physico-Chimica Sinica, 2003, 19(12): 1159-1162. (in Chinese) doi: 10.3866/PKU.WHXB20031214
    CHAI R T, LIAN H ZH, HOU ZH Y, et al. Preparation and characterization of upconversion luminescent NaYF4:Yb3+, Er3+ (Tm3+)/PMMA bulk transparent nanocomposites through in situ photopolymerization[J]. The Journal of Physical Chemistry C, 2010, 114(1): 610-616. doi: 10.1021/jp909180s
    ZHOU D, LIN X M, WANG A L, et al. Fluorescence enhancement of Tb3+ complexes by adding silica-coated silver nanoparticles[J]. Science China Chemistry, 2015, 58(6): 979-985. doi: 10.1007/s11426-014-5265-x
    ZHANG J, SONG F, LIN SH X, et al. Tunable fluorescence lifetime of Eu-PMMA films with plasmonic nanostructures for multiplexing[J]. Optics Express, 2016, 24(8): 8228-8236. doi: 10.1364/OE.24.008228
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article views (222) PDF downloads(25) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint