Volume 14 Issue 5
Sep.  2021
Turn off MathJax
Article Contents
KUANG Shang-qi, GUO Xiang-shuai, FENG Yu-ling, LI Bo-han, ZHANG Yi-ning, YU Ping, PANG Shuang. Research progress of optical chaos in semiconductor laser systems[J]. Chinese Optics, 2021, 14(5): 1133-1145. doi: 10.37188/CO.2020-0216
Citation: KUANG Shang-qi, GUO Xiang-shuai, FENG Yu-ling, LI Bo-han, ZHANG Yi-ning, YU Ping, PANG Shuang. Research progress of optical chaos in semiconductor laser systems[J]. Chinese Optics, 2021, 14(5): 1133-1145. doi: 10.37188/CO.2020-0216

Research progress of optical chaos in semiconductor laser systems

doi: 10.37188/CO.2020-0216
Funds:  Supported by Scientific Research Planning Project of Education Department of Jilin Province (No. JJKH20200728KJ); Science and Technology Development Plan Project of Jilin Province (No. 20190201135JC)
More Information
  • Corresponding author: ksq@cust.edu.cnFYLCUST@163.com
  • Received Date: 28 Dec 2020
  • Rev Recd Date: 14 Jan 2021
  • Available Online: 14 May 2021
  • Publish Date: 18 Sep 2021
  • Chaotic lasers are widely used in secure communication, lidar, optical detection and other applications due to their noise-like randomness, excellent anti-interference and other advantages. Moreover, as semiconductor lasers have small size, stable structure and other advantages, it has become one of the main lasers to produce optical chaos. However, the chaotic laser output from conventional optical feedback semiconductor lasers has the problems of narrow signal bandwidth and delay characteristics, which seriously affect their applications. With consideration for these problems, a comprehensive introduction to reduce the delay characteristics and optimize the chaotic laser bandwidth are reviewed based on recent literatures. This paper also summarizes the research progresses of chaotic secret communication, which is very important in the synchronization of chaotic lasers. The chaotic output of semiconductor lasers and the applications of chaotic lasers are also summarized, and then their development and potential future applications are discussed.


  • loading
  • [1]
    MAIMAN T H, HOSKINS R H, D’HAENENS I J, et al. Stimulated optical emission in fluorescent solids. Ⅱ. Spectroscopy and stimulated emission in ruby[J]. Physical Review, 1961, 123(4): 1151-1157. doi: 10.1103/PhysRev.123.1151
    LORENZ E N. Deterministic nonperiodic flow[J]. Journal of the Atmospheric Sciences, 1963, 20(2): 130-141. doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
    WEISS C O, GODONE A, OLAFSSON A. Routes to chaotic emission in a cw He-Ne laser[J]. Physical Review A, 1983, 28(2): 892-895. doi: 10.1103/PhysRevA.28.892
    MUKAI T, OTSUKA K. New route to optical chaos: Successive-subharmonic-oscil-lation cascade in a semiconductor laser coupled to an external cavity[J]. Physical Review Letters, 1985, 55(17): 1711-1714. doi: 10.1103/PhysRevLett.55.1711
    LAVROV R, PEIL M, JACQUOT M, et al. Electro-optic delay oscillator with nonlocal nonlinearity: optical phase dynamics, chaos, and synchronization[J]. Physical Review E, 2009, 80(2): 026207. doi: 10.1103/PhysRevE.80.026207
    孙胜明, 范杰, 徐莉, 等. 锥形半导体激光器研究进展[J]. 中国光学,2019,12(1):48-58. doi: 10.3788/co.20191201.0048

    SUN SH M, FAN J, XU L, et al. Progress of tapered semiconductor diode lasers[J]. Chinese Optics, 2019, 12(1): 48-58. (in Chinese) doi: 10.3788/co.20191201.0048
    LANG R, KOBAYASHI K. External optical feedback effects on semiconductor injection laser properties[J]. IEEE Journal of Quantum Electronics, 1980, 16(3): 347-355. doi: 10.1109/JQE.1980.1070479
    TKACH R, CHRAPLYVY A. Regimes of feedback effects in 1.5 μm distributed feedback lasers[J]. Journal of Lightwave Technology, 1986, 4(11): 1655-1661. doi: 10.1109/JLT.1986.1074666
    SIMPSON T B, LIU J M, GAVRIELIDES A, et al. Period-doubling cascades and chaos in a semiconductor laser with optical injection[J]. Physical Review A, 1995, 51(5): 4181-4185. doi: 10.1103/PhysRevA.51.4181
    TANG S, LIU J M. Chaotic pulsing and quasi-periodic route to chaos in a semiconductor laser with delayed opto-electronic feedback[J]. IEEE Journal of Quantum Electronics, 2001, 37(3): 329-336. doi: 10.1109/3.910441
    ZHANG M J, JI Y N, ZHANG Y N, et al. Remote radar based on chaos generation and radio over fiber[J]. IEEE Photonics Journal, 2014, 6(5): 7902412.
    ARGYRIS A, SYVRIDIS D, LARGER L, et al. Chaos-based communications at high bit rates using commercial fibre-optic links[J]. Nature, 2005, 438(7066): 343-346. doi: 10.1038/nature04275
    吕艺辉, 杨玲珍, 李佳, 等. 混沌激光实现异质物大小和位置的光学检测[J]. 光学技术,2020,46(2):146-151.

    LV Y H, YANG L ZH, LI J, et al. Optical detection of the size and position of foreign object with chaotic laser[J]. Optical Technique, 2020, 46(2): 146-151. (in Chinese)
    乔丽君, 杨强, 柴萌萌, 等. 混沌半导体激光器研究进展[J]. 应用科学学报,2020,38(4):595-611. doi: 10.3969/j.issn.0255-8297.2020.04.006

    QIAO L J, YANG Q, CHAI M M, et al. Progress in chaotic semiconductor lasers[J]. Journal of Applied Sciences, 2020, 38(4): 595-611. (in Chinese) doi: 10.3969/j.issn.0255-8297.2020.04.006
    UDALTSOV V S, LARGER L, GOEDGEBUER J P, et al. Time delay identification in chaotic cryptosystems ruled by delay-differential equations[J]. Journal of Optical Technology, 2005, 72(5): 373-377. doi: 10.1364/JOT.72.000373
    LI N Q, PAN W, LOCQUET A, et al. Time-delay concealment and complexity enhancement of an external-cavity laser through optical injection[J]. Optics Letters, 2015, 40(19): 4416-4419. doi: 10.1364/OL.40.004416
    LIN F Y, LIU J M. Nonlinear dynamical characteristics of an optically injected semiconductor laser subject to optoelectronic feedback[J]. Optics Communications, 2003, 221(1-3): 173-180. doi: 10.1016/S0030-4018(03)01466-4
    LIN F Y, CHAO Y K, WU T C. Effective bandwidths of broadband chaotic signals[J]. IEEE Journal of Quantum Electronics, 2012, 48(8): 1010-1014. doi: 10.1109/JQE.2012.2198195
    KANNO K, UCHIDA A. Consistency and complexity in coupled semiconductor lasers with time-delayed optical feedback[J]. Physical Review E, 2012, 86(6): 066202. doi: 10.1103/PhysRevE.86.066202
    RONTANI D, LOCQUET A, SCIAMANNA M, et al. Loss of time-delay signature in the chaotic output of a semiconductor laser with optical feedback[J]. Optics Letters, 2007, 32(20): 2960-2962. doi: 10.1364/OL.32.002960
    RONTANI D, LOCQUET A, SCIAMANNA M, et al. Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view[J]. IEEE Journal of Quantum Electronics, 2009, 45(7): 879-1891. doi: 10.1109/JQE.2009.2013116
    OHTSUBO J. Semiconductor Lasers: Stability, Instability and Chaos[M]. Heidelberg: Springer, 2013.
    韩韬, 刘香莲, 李璞, 等. 线宽增强因子对光反馈半导体激光器混沌信号生成随机数性能的影响[J]. 物理学报,2017,66(12):124203. doi: 10.7498/aps.66.124203

    HAN T, LIU X L, LI P, et al. Influence of the linewidth enhancement factor on the characteristics of the random number extracted from the optical feedback semiconductor laser[J]. Acta Physica Sinica, 2017, 66(12): 124203. (in Chinese) doi: 10.7498/aps.66.124203
    李增, 冯玉玲, 王晓茜, 等. 半导体激光器输出混沌光的延时特性和带宽[J]. 物理学报,2018,67(14):140501. doi: 10.7498/aps.67.20180035

    LI Z, FENG Y L, WANG X Q, et al. Time delay characteristics and bandwidth of chaotic laser from semiconductor laser[J]. Acta Physica Sinica, 2018, 67(14): 140501. (in Chinese) doi: 10.7498/aps.67.20180035
    ZHAO A K, JIANG N, LIU SH Q, et al. Wideband complex-enhanced chaos generation using a semiconductor laser subject to delay-interfered self-phase-modulated feedback[J]. Optics Express, 2019, 27(9): 12336-12348. doi: 10.1364/OE.27.012336
    LI S S, CHAN S C. Chaotic time-delay signature suppression in a semiconductor laser with frequency-detuned grating feedback[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(6): 541-552. doi: 10.1109/JSTQE.2015.2427521
    XU Y P, ZHANG M J, ZHANG L, et al. Time-delay signature suppression in a chaotic semiconductor laser by fiber random grating induced random distributed feedback[J]. Optics Letters, 2017, 42(20): 4107-4110. doi: 10.1364/OL.42.004107
    HONG Y H, CHEN X F, SPENCER P S, et al. Enhanced flat broadband optical chaos using low-cost VCSEL and fiber ring resonator[J]. IEEE Journal of Quantum Electronics, 2015, 51(3): 1200106.
    CHENG C H, CHEN Y CH, LIN F Y. Chaos time delay signature suppression and bandwidth enhancement by electrical heterodyning[J]. Optics Express, 2015, 23(3): 2308-2319. doi: 10.1364/OE.23.002308
    JIANG N, WANG CH, XUE CH P, et al. Generation of flat wideband chaos with suppressed time delay signature by using optical time lens[J]. Optics Express, 2017, 25(13): 14359-14367. doi: 10.1364/OE.25.014359
    孙巍阳, 张胜海, 吴天安, 等. 双光反馈双光注入混沌半导体激光器延时特征峰抑制[J]. 激光与光电子学进展,2016,53(12):121406.

    SUN W Y, ZHANG SH H, WU T A, et al. Delay characteristic peak suppression of bioptical feedback bioptical injection chaotic semiconductor laser[J]. Laser &Optoelectronics Progress, 2016, 53(12): 121406. (in Chinese)
    QIAO L J, LV T SH, XU Y, et al. Generation of flat wideband chaos based on mutual injection of semiconductor lasers[J]. Optics Letters, 2019, 44(22): 5394-5397. doi: 10.1364/OL.44.005394
    KANNO K, UCHIDA A, BUNSEN M. Complexity and bandwidth enhancement in unidirectionally coupled semiconductor lasers with time-delayed optical feedback[J]. Physical Review E, 2016, 93(3): 032206. doi: 10.1103/PhysRevE.93.032206
    MU P H, HE P F, LIU Q L, et al. Numerical study of the time-delay signature in chaos optical injection system with phase-conjugate feedback[J]. Optik, 2019, 179: 71-75. doi: 10.1016/j.ijleo.2018.10.164
    ZHANG J ZH, LI M W, WANG A B, et al. Time-delay-signature-suppressed broadband chaos generated by scattering feedback and optical injection[J]. Applied Optics, 2018, 57(22): 6314-6317. doi: 10.1364/AO.57.006314
    XUE CH P, JIANG N, LV Y X, et al. Security-enhanced chaos communication with time-delay signature suppression and phase encryption[J]. Optics Letters, 2016, 41(16): 3690-3693. doi: 10.1364/OL.41.003690
    张依宁, 徐艾诗, 冯玉玲, 等. 光电反馈半导体激光器输出光的混沌特性[J]. 光学学报,2020,40(12):1214001. doi: 10.3788/AOS202040.1214001

    ZHANG Y N, XU A SH, FENG Y L, et al. Chaotic characteristics of output light by photoelectric feedback semiconductor laser[J]. Acta Optica Sinica, 2020, 40(12): 1214001. (in Chinese) doi: 10.3788/AOS202040.1214001
    张依宁, 冯玉玲, 王晓茜, 等. 半导体激光器混沌输出的延时特征和带宽[J]. 物理学报,2020,69(9):090501. doi: 10.7498/aps.69.20191881

    ZHANG Y N, FENG Y L, WANG X Q, et al. Time delay signature and bandwidth of chaotic laser output from semiconductor laser[J]. Acta Physica Sinica, 2020, 69(9): 090501. (in Chinese) doi: 10.7498/aps.69.20191881
    PECORA L M, CARROLL T L. Driving systems with chaotic signals[J]. Physical Review A, 1991, 44(4): 2374-2383. doi: 10.1103/PhysRevA.44.2374
    KANG Z X, SUN J, MA L, et al. Multimode synchronization of chaotic semiconductor ring laser and its potential in chaos communication[J]. IEEE Journal of Quantum Electronics, 2014, 50(3): 148-157. doi: 10.1109/JQE.2014.2299593
    CAI X L, HO Y L D, MEZOSI G, et al. Frequency-domain model of longitudinal mode interaction in semiconductor ring lasers[J]. IEEE Journal of Quantum Electronics, 2012, 48(3): 406-418. doi: 10.1109/JQE.2012.2182759
    JAYAPRASATH E, HOU Y SH, WU ZH M, et al. Anticipation in the polarization chaos synchronization of uni-directionally coupled vertical-cavity surface-emitting lasers with polarization-preserved optical injection[J]. IEEE Access, 2018, 6: 58482-58490. doi: 10.1109/ACCESS.2018.2874625
    CHEN X F, HU H P. Chaos synchronisation of electro-optical chaotic systems with partially different parameters[J]. IET Optoelectronics, 2016, 10(3): 89-93. doi: 10.1049/iet-opt.2015.0039
    AL BAYATI B M, AHMAD A K, AL NAIMEE K A M. Effect of control parameters on chaos synchronization by means of optical feedback[J]. Optics Communications, 2020, 472: 126032. doi: 10.1016/j.optcom.2020.126032
    YANG L, PAN W, YAN L SH, et al. Mapping the dynamic complexity and synchronization in unidirectionally coupled external-cavity semiconductor lasers using permutation entropy[J]. Journal of the Optical Society of America B, 2015, 32(7): 1463-1470. doi: 10.1364/JOSAB.32.001463
    SASAKI T, KAKESU I, MITSUI Y, et al. Common-signal-induced synchronization in photonic integrated circuits and its application to secure key distribution[J]. Optics Express, 2017, 25(21): 26029-26044.
    BÖHM F, SAHAKIAN S, DOOMS A, et al. Stable high-speed encryption key distribution via synchronization of chaotic optoelectronic oscillators[J]. Physical Review Applied, 2020, 13: 064014. doi: 10.1103/PhysRevApplied.13.064014
    XIANG SH Y, HAN Y N, WANG H N, et al. Zero-lag chaos synchronization properties in a hierarchical tree-type network consisting of mutually coupled semiconductor lasers[J]. Nonlinear Dynamics, 2020, 99(4): 2893-2906. doi: 10.1007/s11071-020-05479-9
    KANNO K, HIDA T, UCHIDA A, et al. Spontaneous exchange of leader-laggard relationship in mutually coupled synchronized semiconductor lasers[J]. Physical Review E, 2017, 95(5): 052212. doi: 10.1103/PhysRevE.95.052212
    李娟, 冯勇, 杨旭强, 等. 三维可逆混沌映射图像加密及其优化算法[J]. 光学 精密工程,2008,16(9):1738-1745.

    LI J, FENG Y, YANG X Q, et al. Invertible chaotic 3D map based image encryption and its optimized algorithm[J]. Optics and Precision Engineering, 2008, 16(9): 1738-1745. (in Chinese)
    刘群, 刘崇, 朱小磊, 等. 星载海洋激光雷达最佳工作波长分析[J]. 中国光学,2020,13(1):148-155. doi: 10.3788/co.20201301.0148

    LIU Q, LIU CH, ZHU X L, et al. Analysis of the optimal operating wavelength of spaceborne oceanic lidar[J]. Chinese Optics, 2020, 13(1): 148-155. (in Chinese) doi: 10.3788/co.20201301.0148
    ZHONG D ZH, XU G L, LUO W, et al. Real-time multi-target ranging based on chaotic polarization laser radars in the drive-response VCSELs[J]. Optics Express, 2017, 25(18): 21684-21704. doi: 10.1364/OE.25.021684
    WANG B J, GUO ZH W, SHEN ZH M, et al. Underwater 3D imaging utilizing 520 nm chaotic lidar[J]. Journal of Russian Laser Research, 2020, 41(4): 399-405. doi: 10.1007/s10946-020-09892-8
    唐士文, ANNOVAZZI-LODI V, 王昭. 光学密码术最新进展[J]. 中国光学,2014,7(1):89-97.

    TANG SH W, ANNOVAZZI-LODI V, WANG ZH. Recent advances in optical cryptography[J]. Chinese Optics, 2014, 7(1): 89-97. (in Chinese)
    KE J X, YI L L, XIA G Q, et al. Chaotic optical communications over 100 km fiber transmission at 30 Gb/s bit rate[J]. Optics Letters, 2018, 43(6): 1323-1326. doi: 10.1364/OL.43.001323
    LI Q L, LU SH SH, BAO Q, et al. Simultaneous trilateral communication based on three mutually coupled chaotic semiconductor lasers with optical feedback[J]. Applied Optics, 2018, 57(2): 251-257. doi: 10.1364/AO.57.000251
    郭帅, 苏杭, 黄星灿, 等. 光学无创血糖浓度检测方法的研究进展[J]. 中国光学,2019,12(6):1235-1248. doi: 10.3788/co.20191206.1235

    GUO SH, SU H, HUANG X C, et al. Research progress in optical methods for noninvasive blood glucose detection[J]. Chinese Optics, 2019, 12(6): 1235-1248. (in Chinese) doi: 10.3788/co.20191206.1235
    SHAHZADI R, ANWAR S M, QAMAR F, et al. Secure EEG signal transmission for remote health monitoring using optical chaos[J]. IEEE Access, 2019, 7: 57769-57778. doi: 10.1109/ACCESS.2019.2912548
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article views(1349) PDF downloads(264) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint