Volume 14 Issue 6
Nov.  2021
Turn off MathJax
Article Contents
LI Yi-ting, WANG Ling-jie, ZHANG Yu-hui, LIU Ming-xin. Optical design of visual and infrared imaging system based on space-based platform[J]. Chinese Optics, 2021, 14(6): 1495-1503. doi: 10.37188/CO.2019-0255
Citation: LI Yi-ting, WANG Ling-jie, ZHANG Yu-hui, LIU Ming-xin. Optical design of visual and infrared imaging system based on space-based platform[J]. Chinese Optics, 2021, 14(6): 1495-1503. doi: 10.37188/CO.2019-0255

Optical design of visual and infrared imaging system based on space-based platform

doi: 10.37188/CO.2019-0255
Funds:  Supported by National Research & Development plan of China(No. 2016YFF010902)
More Information
  • Corresponding author: wanglingjie@126.com
  • Received Date: 13 Jan 2020
  • Rev Recd Date: 22 Feb 2020
  • Available Online: 04 Nov 2021
  • Publish Date: 19 Nov 2021
  • Due to the excessive data transmission of the geostationary orbit array staring spectrometer, the data transmission is difficulty and signal acquisition and processing time is long. According to the characteristic that geostationary orbit platform can stay over the fixed area for a long time, a scheme of large aperture visual and infrared snapshot spectrometer based on compressive sensing was proposed. The physical model of compressive sensing spectral imaging was analyzed, the structure of the optical system was designed, and the relevant parameters were calculated. A coaxial three-mirror afocal optical system was used in objective lens, and dichroic films were used to split the spectrum. After optimization, the optical system was shown with a width of 400 km×400 km, 50 m Ground Sample Distance (GSD) in visible part, 400 m GSD in Middle Wave Infrared (MWIR) part and 625 m GSD in Long Wave Infrared (LWIR) part. The results show that the MTF in the visible part is higher than 0.455 at 78.125 lp/mm, the MTF in mid-wave infrared region is higher than 0.518 at 33.3 lp/mm, and the MTF is higher than 0.498 at 20.8 lp/mm in long-wave infrared region. The spectral resolutions are 20 nm, 50 nm, and 150 nm in the visible part, the mid-wave infrared region, and the long-wave infrared region, respectively. The second-order spectrum of the visual part is less than 0.05 mm. The optical system has good imaging performance, and the imaging quality of each part of the optical system is close to the diffraction limit, which meets the needs of applications and indicators.


  • loading
  • [1]
    戴立群, 唐绍凡, 徐丽娜, 等. 从可见光到热红外全谱段探测的星载多光谱成像仪器技术发展概述[J]. 红外技术,2019,41(2):107-117.
    马文坡, 练敏隆. “高分四号”卫星凝视相机的技术特点[J]. 航天返回与遥感,2016,37(4):26-31. doi: 10.3969/j.issn.1009-8518.2016.04.004

    MA W P, LIAN M L. Technical Characteristics of the Staring Camera on Board GF-4 Satellite[J]. Spacecraft Recovery&Remote Sening, 2016, 37(4): 26-31. (in Chinese) doi: 10.3969/j.issn.1009-8518.2016.04.004
    陶家生, 孙治国, 孙英华, 等. 静止轨道高分辨率光学遥感探索[J]. 光电工程,2012,39(6):1-6.

    TAO J SH, SUN ZH G, SUN Y H, et al. Exploration of High Resolution Optical Remote Sensing of the Geostationary Orbit[J]. Opto-Electronic Engineering., 2012, 39(6): 1-6. (in Chinese)
    罗秀娟, 刘辉, 张羽, 等. 地球同步轨道暗弱目标地基光学成像技术综述[J]. 中国光学,2019,12(4):753-766.
    黄思婕. 地球静止轨道大动态范围信息获取技术研究[D]. 上海: 中国科学院上海技术物理研究所. 2015.

    HUANG S J. Research on the technology of geosynchonous orbit high dynamic range information acquisition. Shanghai: Shanghai Institute of Technical Physics. 2015. (in Chinese)
    刘铭鑫.基于压缩感知的编码孔径光谱成像技术研究[D]. 长春: 中国科学院长春光学精密机械与物理研究所. 2019.

    Liu M X. Research on coded aperture spectral imaging technology based on compressed sensing[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics Chinese Academy of Sciences, 2019. (in Chinese)
    钱路路.计算光谱成像技术研究[D]. 安徽: 中国科学技术大学. 2013.

    Qian L L. Research on computational imaging spectroscopy[D]. Anhui: University of science and Technology of China. 2013. (in Chinese)
    闫歌, 许廷发, 马旭, 等. 动态测量的高光谱图像压缩感知[J]. 中国光学,2018,11(4):550-559. doi: 10.3788/co.20181104.0550

    YAN G, XU T F, MA X, et al. Hyperspectral image compression sensing based on dynamic measurement[J]. Chinese Optics, 2018, 11(4): 550-559. (in Chinese) doi: 10.3788/co.20181104.0550
    韩庆, 王健, 熊峥, 等. 用于长波红外目标模拟器的 DMD衍射特性分析[J]. 红外激光与工程,2017,46(5).

    HAN Q, WANG J, XIONG J. et al. Diffraction characteristics analysis for DMD-based scene projectors in the long-wave infrared[J]. Infrared and Laser Engineering, 2017, 46(5). (in Chinese)
    吕伟振, 刘伟奇, 魏忠伦, 等. 基于DMD的高动态范围成像光学系统设计[J]. 红外与激光工程,2014,43(4).

    LV W ZH, LIU W Q, WEI ZH L, et al. Design of high dynamic range imaging optical system based on DMD[J]. Infrared and Laser Engineering, 2014, 43(4). (in Chinese)
    孙永强, 胡源, 王月旗, 等. 数字微镜器件在会聚成像光路中的像差分析[J]. 光学学报,2019,39(3).

    SUN Y Q, HU Y, WANG Y Q, et al. Analysis on Aberration of Digital Micromirror Device in Convergent Imaging[J]. Acta Optica Sinica, 2019, 39(3). (in Chinese)
    刑振冲.灵巧型长焦多波段共口径光学系统的研究[D]. 长春: 中国科学院长春光学精密机械与物理研究所. 2018.

    Xing ZH CH. Research on miniature telefocal multiband common aperture optical system[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics Chinese Academy of Sciences, 2018. (in Chinese)
    张天一, 朱永田, 候永辉, 等. LAMOST高分辨率光谱仪研制[J]. 中国光学,2019,12(1):148-155. doi: 10.3788/co.20191201.0148

    Zhang T Y, ZHU Y T, Hou Y H, et al. Construction of a LAMOST high resolution spectrograph[J]. Chinese Optics, 2019, 12(1): 148-155. (in Chinese) doi: 10.3788/co.20191201.0148
    曹佃生, 林冠宇, 杨小虎, 等. 紫外双光栅光栅仪结构设计与波长精度分析[J]. 中国光学,2018,11(2):219-230.

    CAO T SH, LIN G Y, YANG X H, et al. Structure design and wavelength accuracy analysis of ultraviolet double grating spectrometer[J]. Chinese Optics, 2018, 11(2): 219-230. (in Chinese)
    潘君骅. 光学非球面的设计、加工与检验[M]. 苏州: 苏州大学出版社2004.

    PAN J H. Design, Fabrication and Testing of Optical Asphere[M]. Suzhou: Suzhou University Press, 2004. LUO X J, LIU H, ZHANG Y, et al. . Review of ground-based optical imaging techniques for dim GEO objects[J]. Chinese Optics, 2019, 12(4): 753-766. (in Chinese)
    孙武, 韩诚山, 吕恒毅, 等. 推扫式多光谱遥感相机动态范围拓展方法[J]. 中国光学,2019,12(4):906-913.

    SUN W, HAN CH SH, LV H Y, et al. Dynamic range extending method for push-broom multispectral remote sensing cameras[J]. Chinese Optics, 2019, 12(4): 906-913. (in Chinese)
    袁立银, 谢佳楠, 候佳, 等. 紧凑型红外成像光谱仪光学设计[J]. 红外激光与工程,2018,47(4).

    YUAN L Y, XIE J N, HOU J, et al. Optical design of compact infrared imaging spectrometer[J]. Ingrared and Laser Engineering, 2018, 47(4). (in Chinese)
    胡斌, 黄颖, 马永利, 等. 高分辨率红外成像仪五反无焦主系统设[J]. 红外与激光工程,2016,45(5).

    HU B, HUANG Y, MA Y L, et al. Design of five-mirror afocal principal system for high spatial resolution infrared imager[J]. Infrared and Laser Engineering, 2016, 45(5). (in Chinese)
    张营.长波红外高光谱成像仪光学技术研究[D]. 上海: 中国科学院上海技术物理研究所. 2016.

    ZHANG Y. Optical Technology of Long-wave Infrared Hyperspectral Imaging[D]. Shanghai: shanghai Institute of Technical Physics. 2016.
    韩军, 李珣, 吴玲玲, 等. 一种光栅型成像光谱仪光学系统设计[J]. 应用光学,2012,33(2):233-239.

    HAN J, LI X, WU L L. Optical system design of grating-based imaging spectrometer[J]. Journal of applied Optics, 2012, 33(2): 233-239. (in Chinese)
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(18)  / Tables(4)

    Article views(1218) PDF downloads(175) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint