Design of decentered aperture-divided optical system of infrared polarization imager
-
摘要: 为了在复杂及伪装的红外背景中识别出小温差目标,本文提出了一种基于分孔径的偏振成像系统结构,并对分孔径偏振成像系统所采用的分孔径成像系统及中继成像系统进行了设计研究。首先,根据Stokes矢量介绍了系统的工作理论和光学结构;其次,在现有探测器的结构参数要求下,计算出了光学系统的偏心量等参数,选择硅、锗作为透镜材料。在此基础上,确定了分孔径成像系统结构和中继成像系统结构。接着使用离轴偏心多重结构设计方法对初始结构进行了优化,研究了将普通红外物镜转变为具有实入瞳的像方远心结构的方法;最后,完成了分孔径成像系统和中继成像系统的整体系统匹配。设计结果表明,整体系统的调制传递函数在探测器奈奎斯特频率为17 lp/mm处大于0.6,能够满足系统的设计要求。本文设计的结构可以对探测目标实现实时偏振成像,且具有结构紧凑的优点。Abstract: In order to identify the target with little temperature difference in complicated and disguised infrared background, a decentered aperture-divided polarization imaging system is introduced in this paper. The design of decentered aperture-divided imaging system and relay imaging system adopted in decentered aperture-divided polarization imaging system are also studied. Firstly, the working theory and optical structure of the system are introduced according to the Stokes vectors. Secondly, the parameters of the optical system such as the eccentricity are calculated under the requirements of the structural parameters of the existing detectors in the laboratory, and silicon and germanium are selected as the lens materials. According to these parameters, both the structure of aperture-divided imaging system and that of relay imaging system are determined on this basis. Then the off-axis eccentric multi-structure design method is used to optimize the initial structure. The transformation method from ordinary infrared objective to image-side telecentric structure with real entrance pupil is studied. Finally, the overall system matching of aperture-divided imaging system and relay imaging system is completed. The results show that the overall system modulation transfer function(MTF) at Nyquist frequency of the detector of 17 lp/mm is greater than 0.6, which can meet the system design requirements. The structure introduced in this paper can detect the real-time polarization of the target, and possesses the advantages of compact structure.
-
Key words:
- polarized imaging /
- mid-infrared /
- aperture-divided /
- optical design
-
表 1 分孔径成像系统单通道参数
Table 1. Parameter of single channel in aperture-divided imaging system
序号 半径/mm 厚度/mm 玻璃 1 231.60 3.298 4 SILICON 2 1 066.53 54.34 3 102.02 9.87 GERMANIUM 4 71.55 78.42 5 389.06 8.02 SILICON 表 2 分孔径成像系统初级像差
Table 2. Primary aberrations of aperture-divided imaging system
SA TCO TAS SAS DST -0.001 631 0.002 635 -0.000 091 -0.000 398 -0.007 235 表 3 中继成像系统参数
Table 3. Parameters of relay imaging system
序号 半径/mm 厚度/mm 玻璃 1 100.99 3.80 SILICON 2 402.03 1.20 3 339.21 1.70 GERMANIUM 4 145.70 107.56 5 52.51 3.58 GERMANIUM 6 57.26 1.40 7 -17.20 5.68 GERMANIUM 8 -23.30 21.48 9 无限 11.94 10 162.75 1.20 GERMANIUM 11 -43.54 1.92 12 -14.81 3.31 GERMANIUM 13 -176.52 1.20 14 -433.77 3.16 SILICON 15 -21.18 1.86 -
[1] UNGERH, ZEEVIY Y. Blind separation of a dynamic image sourcefrom superimposed reflection[J]. SPIE, 2005, 5888:588803. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7078205 [2] 王骐, 梁小雪, 魏靖松, 等.采用条纹管激光成像系统的偏振成像实验[J].红外与激光工程, 2010, 39(3): 427-430. http://www.wenkuxiazai.com/doc/78e32ac433d4b14e85246887.htmlWANG Q, LIANG X X, WEI J S, et al.. Experiment oflaser polarization imaging using streak tube laser imagingsystem[J]. Infrared and Laser Engineering, 2010, 39(3):427-430.(in Chinese) http://www.wenkuxiazai.com/doc/78e32ac433d4b14e85246887.html [3] TYO J S, L D, GOLDSTEIN, et al.. Review of passive imaging polarimetry for remote sensing applications[J]. Applied Optics, 2006, 45(22):5453-5469. doi: 10.1364/AO.45.005453 [4] SCHECHNERY Y.Polarization-based vision through haze[J]. Applied Optics, 2003. http://www.ncbi.nlm.nih.gov/pubmed/12570274 [5] HALAJIAN J D, HALLOCK H B. Computerized polarimetric terrain mapping system: US 3864513[P]. 1975-09-11. [6] 张朝阳, 程海峰, 陈朝辉, 等.伪装遮障的光学与红外偏振成像[J].红外与激光工程, 2009, 38(3): 423-426. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hwyj200903012&dbname=CJFD&dbcode=CJFQZHANG CH Y, CHENG H F, CHEN ZH H, et al.. Polarimetric imaging of camouflage screen in visibleand infrared wave band[J]. Infrared and Laser Engineering, 2009, 38(3):423-426.(in Chinese) http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hwyj200903012&dbname=CJFD&dbcode=CJFQ [7] 陈伟力, 王霞, 金伟其, 等.采用中波红外偏振成像的目标探测实验[J].红外与激光工程, 2011, 40(1):7-11. http://www.wenkuxiazai.com/doc/d7cb50840c22590103029d16.htmlCHEN W L, WANG X, JIN W Q, et al.. Experiment of target detection based on medium infrared polarization imaging[J]. Infrared and Laser Engineering, 2009, 40(1):7-11.(in Chinese) http://www.wenkuxiazai.com/doc/d7cb50840c22590103029d16.html [8] 杨长久, 李双, 裘桢炜, 等.同时偏振成像探测系统的偏振图像配准研究[J].红外与激光工程, 2013, 42(1):262-267. https://www.wenkuxiazai.com/doc/f1f4244eff00bed5b9f31d86.htmlYANG CH J, LI SH, QIU ZH W, et al.. Study on image registration of simultaneous imagingpolarization system[J]. Infrared and Laser Engineering, 2013, 42(1):262-267.(in Chinese) https://www.wenkuxiazai.com/doc/f1f4244eff00bed5b9f31d86.html [9] JONES R C.A new calculus for the treatment of opticalsystems:Ⅰ.Description and discussion of the calculus[J]. Opt.Soc. Am, 1941, 31:488-493. doi: 10.1364/JOSA.31.000488 [10] 于建冬, 梁中翥, 梁静秋, 等.成像光谱仪大孔径前置物镜设计研究[J].光学学报, 2015, 35(2):0222002. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gxxb201502036&dbname=CJFD&dbcode=CJFQYU J D, LIANG ZH ZH, LIANG J Q, et al.. Research and design of prefixing objective with large aperture in imaging spectrometer[J]. Acta Optica Sinica, 2015, 35(2):0222002.(in Chinese) http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gxxb201502036&dbname=CJFD&dbcode=CJFQ [11] 韩宁. 红外偏振成像技术研究[M]. 南京: 南京理工大学, 2008. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1366688HAN N. Study the Image of Infrared Polarization[M]. Nanjing: Nanjing University of Science and Technology, 2008. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1366688 [12] 李淑军, 姜会林, 朱京平, 等.偏振成像探测技术发展现状及关键技术[J].中国光学, 2013, 6(6): 803-809. http://www.chineseoptics.net.cn/CN/abstract/abstract9069.shtmlLI SH J, JIANG H L, ZHU J P, et al.. Development status and key technologiesof polarization imaging detection[J]. Chinese Optics, 2013, 6(6):803-809.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9069.shtml [13] 王霞, 张明阳, 陈振跃, 等.主动偏振成像的系统结构概述[J].红外与激光工程, 2013, 42(8):2244-2251. http://www.opticsjournal.net/Articles/Abstract?aid=OJ160612000173x4A7C0WANG X, ZHANG M Y, CHEN ZH Y, et al.. Overview on System structure of active polarization imaging[J]. Infrared and Laser Engineering, 2013, 42(8):2244-2251.(in Chinese) http://www.opticsjournal.net/Articles/Abstract?aid=OJ160612000173x4A7C0 [14] 贺虎成. 分孔径同时偏振成像光学系统的研究[D]. 苏州: 苏州大学, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10285-1014296324.htmHE H CH. Study on Optical System of Simultaneous and Complete Polarization Imaging[D]. Suzhou: Soochow University, 2014. (in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10285-1014296324.htm [15] 曲贺盟, 张新.高速切换紧凑型双视场无热化红外光学系统设计[J].中国光学, 2014, 4(9):622-630. http://www.chineseoptics.net.cn/CN/abstract/abstract9187.shtmlQU H M, ZHANG X. Design of athermalized infrared optical system withhigh-speed switching and compact dual-FOV[J]. Chinese Optics, 2014, 4(9):622-630.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9187.shtml [16] PEZZANITI J L, CHENAULTD B. A division of aperture MWIR imaging polarimeter[J]. SPIE, 2005, 5888:58880V. doi: 10.1117/12.623543 [17] 郜洪云, 熊涛, 杨长城.中波红外连续变焦光学系统[J].光学精密工程, 2007, 7(6):1038-1043. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gxjm200707007&dbname=CJFD&dbcode=CJFQGAO H Y, XIONG T, YANG CH CH. Middle infrared continuous zoom optical system[J]. Opt. Precision Eng., 2007, 7(06):1038-1043.(in Chinese) http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gxjm200707007&dbname=CJFD&dbcode=CJFQ -