留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超表面上表面等离激元波的光栅衍射行为研究

王雪飞 卢振武 王泰升 鱼卫星

王雪飞, 卢振武, 王泰升, 鱼卫星. 超表面上表面等离激元波的光栅衍射行为研究[J]. 中国光学, 2018, 11(1): 60-73. doi: 10.3788/CO.20181101.0060
引用本文: 王雪飞, 卢振武, 王泰升, 鱼卫星. 超表面上表面等离激元波的光栅衍射行为研究[J]. 中国光学, 2018, 11(1): 60-73. doi: 10.3788/CO.20181101.0060
WANG Xue-fei, LU Zhen-wu, WANG Tai-sheng, YU Wei-xing. Grating diffractive behavior of surface plasmon wave on meta-surface[J]. Chinese Optics, 2018, 11(1): 60-73. doi: 10.3788/CO.20181101.0060
Citation: WANG Xue-fei, LU Zhen-wu, WANG Tai-sheng, YU Wei-xing. Grating diffractive behavior of surface plasmon wave on meta-surface[J]. Chinese Optics, 2018, 11(1): 60-73. doi: 10.3788/CO.20181101.0060

超表面上表面等离激元波的光栅衍射行为研究

doi: 10.3788/CO.20181101.0060
基金项目: 

国家自然科学基金资助项目 61361166004

详细信息
    作者简介:

    王雪飞(1990—), 女, 吉林长春人, 硕士研究生, 2013年于东北林业大学获得学士学位, 主要从事表面等离子体波方面的研究。E-mail:wangxuefeizb@163.com

    鱼卫星(1975—),男,陕西临潼人,博士,研究员,1998年于西北工业大学获学士学位,2001年于中国科学院长春光学 精密机械与物理研究所获得硕士学位,2004年于新加坡南洋理工大学获得博士学位,主要从事亚波长光学、微纳光学、表面等离子体光学、微细加工技术、三维微纳加工技术等方面的研究。E-mail:yuwx@opt.ac.cn

  • 中图分类号: TN305.7

Grating diffractive behavior of surface plasmon wave on meta-surface

Funds: 

National Natural Science Foundation of China 61361166004

More Information
    Author Bio:

    WANG Xuefei(1990—), master′s degree candidate, obtained her bachelor's degree from Northeast Forestry University in 2013. Her main research interest focuses on surface plasmon waves. E-mail:wangxuefeizb@163.com

    YU Weixing(1975—) received his bachelor′s degree from Northwestern Polytechnical University in 1998, a master′s degree from Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences in 2001.In 2004, he received his Ph.D. from Nanyang Technological University in Singapore.In recent years, he is mainly engaged in research on the fields of subwavelength optics, micro/nano optics, surface plasmonic optics, microfabrication technology and 3D micro/nano fabrication technology. E-mail:yuwx@opt.ac.cn

    Corresponding author: YU Wei-xing, E-mail:yuwx@opt.ac.cn
  • 摘要: 本文利用严格数值仿真研究了550~700 nm波段的可见光通过金属光栅耦合方式激发的表面等离激元(SPP)波在金属表面的光栅衍射行为与现象。研究结果表明:SPP波在金属表面的衍射行为与自由空间光相比有极大不同,由于SPP波的近场属性,经金属光栅衍射后在近场可表现出明显的光栅分光现象,但经过一段传输距离后则分光现象消失而表现为不同级次的光合为同一束光;在近场衍射情况下,其情况与自由空间光衍射行为类似,对SPP亚波长金属光栅来说同样只有零级透射光;而当金属光栅周期大于SPP波长时,高级衍射级次则开始出现。研究结果对下一步在金属表面上实现微米级片光谱仪器具有重要借鉴意义。
  • 图  1  一维矩形金属光栅横截面

    Figure  1.  Cross section of rectangular metal gratings in one-dimension

    图  2  SPP波超表面上近场衍射的模型图

    Figure  2.  Theoretical model of near-field diffraction for the SPP wave on meta-surface

    图  3  波长在550~700 nm内,入射角度在10°~15°范围内时,金属光栅结构的反射率与波长和入射角的关系图:(a)三维关系图;(b)反射率曲线图

    Figure  3.  Relationship between the reflectivity of the metal grating structure and wavelength for different incident angles for the wavelength in the range of 550-700 nm and the incident angle in the range of 10°-15°. (a)3D Diagram; (b)2D curve

    图  4  波长λ=625 nm的入射光激发的SPP波在周期不同,占空比一定的条件下的衍射现象(图中白色断线表示金属衍射光栅的位置)

    Figure  4.  Diffraction phenomenon of SPP wave of incidence light with wavelength of 625 nm when diffraction grating with different period but the same filling factor(It should be noted that the white dashed line represents the location of the diffraction grating)

    图  5  入射光波长λ=625 nm, 衍射光栅周期为910 nm,占空比不同时的衍射现象,其中白色虚线表示金属光栅的位置。(a)占空比为0.1;(b)占空比为0.3;(c)占空比为0.5;(d)占空比为0.7;(e)占空比为0.9;(f)衍射光栅占空比不同时,金属薄膜表面上x=0直线上的近场衍射电场强度曲线图

    Figure  5.  Diffraction phenomenon of SPP wave for an incidence light with wavelength of 625 nm for diffraction grating with different duty ratios and the fixed grating period. (a)Duty radio is 0.1; (b)Duty radio is 0.3; (c)Duty radio is 0.5; (d)Duty radio is 0.7; (e)Duty radio is 0.9; (f)Electric field intensity distribution of the diffraction patterns along y axis under different duty radio at x=0

    图  6  自由空间光与超表面上光栅近场衍射行为对比结果图:(a)空间光的近场衍射装置图;(b)SPP波超表面上的光栅近场衍射图;(c)自由空间光的光栅近场衍射图;(d)对应(b)在距衍射光栅0.95 μm处X方向上的电场分布图;(e)对应(c)在距衍射光栅0.95 μm处Z方向上的电场分布图;(f)对应(d)、(e)在金属薄膜表面处的电场强度曲线

    Figure  6.  Comparison of near field diffraction of SPP wave and free space light: (a)theoretical model for near field diffraction of free space light; (b)near field diffraction of SPP on meta-surface; (c)near field diffraction in free space light; (d)electric field distribution in X direction at 0.95 μm from diffraction grating corresponding to (b); (e)electric field distribution in Z direction at 0.95 μm corresponding to (c); (f)electric field intensity at the surface of the metal film corresponding to (d), (e)

    图  7  两种衍射光栅的示意图

    Figure  7.  Schematic diagrams of two kinds of diffraction gratings

    图  8  (a) 对应图 7(a)所示结构,入射波长为625 nm的近场衍射;(b)对应图 7(b)所示结构,波长625 nm时近场衍射;(c)对应图 7(b)所示结构,入射光波长为550~700 nm的近场衍射曲线图。图中左侧白色虚线表示衍射光栅所在位置

    Figure  8.  (a)Near field diffraction of the incident light at 625 nm Corresponding to Fig. 7(a); (b)near field diffraction of the incident light at 625 nm Corresponding to Fig. 7(b); (c)curve of near field diffraction of the incident light at 550-700 nm corresponding to Fig. 7(b). White dashed line in the figure(ieft sode) represents the grating location

  • [1] 梁秋群. 金属纳米结构表面等离激元杂化和吸收特性的研究[D]. 北京: 中国科学院大学, 2015. http://www.irgrid.ac.cn/handle/1471x/1004792

    LIANG Q Q. Study on plasmon hybridization and optical absorption properties of metallic mano-structures[D]. Beijing: University of the Chinese Academy of Sciences, 2015. (in Chinese) http://www.irgrid.ac.cn/handle/1471x/1004792
    [2] 曹水艳. 表面等离子体结构聚焦和吸收特性的研究[D]. 北京: 中国科学院大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-80139-1014218233.htm

    CAO SH Y. Study on the property of focusing and absorption of plasmonic nanostructures[D]. Beijing: University of the Chinese Academy of Sciences, 2013. (in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-80139-1014218233.htm
    [3] LIU N, MESCH M, WEISS T, et al.. Infrared perfect absorber and its application as plasmonic sensor[J]. Nano Lett., 2010, 10(7):2342-2348. doi: 10.1021/nl9041033
    [4] DREGELY D, TAUBERT R, GIESSEN H, et al.. 3D optical Yagi-Uda nanoantenna array[J]. Nat. Commun., 2011, 2:267. doi: 10.1038/ncomms1268
    [5] CAI W, SHALAE V V. Optical metamaterials:fundamentals and applications[J]. Contemporary Physics, 2012, 53(3):278-279. doi: 10.1080/00107514.2012.661780
    [6] YANG J Z, WANG T S, CHEN Z L, et al.. Super-resolution imaging at mid-infrared waveband in graphene-nanocavity formed on meta-surface[J]. Scientific Reports, 2016, 6:37898. doi: 10.1038/srep37898
    [7] 肖钰斐, 张卫平, 黄海华, 等.金属光栅结构对表面等离子体共振的影响[J].中国激光, 2013, 40(11):245-250. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jjzz201311044&dbname=CJFD&dbcode=CJFQ

    XIAO Y F, ZHANG W P, HUANG H H, et al.. Influence of function of metal grating shape on surface plasmon resonance[J]. Chinese J. Laser, 2013, 40(11):245-250.(in Chinese) http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jjzz201311044&dbname=CJFD&dbcode=CJFQ
    [8] 刘媛媛, 熊广, 王杨, 等.多谐振斦形缝隙纳米天线设计及吸收特性[J].光学 精密工程, 2017, 25(8):2155-2164. http://www.eope.net/gxjmgc/CN/abstract/abstract17156.shtml

    LIU Y Y, XIONG G, WANG Y, et al.. Design of multi resonant U shaped slots nano-antenna and their absorption properties[J]. Opt. Precision Eng., 2017, 25(8):2155-2164.(in Chinese) http://www.eope.net/gxjmgc/CN/abstract/abstract17156.shtml
    [9] 陈烽, 叶雄英, 伍康, 等.双波长集成光栅干涉微位移测量方法[J].光学 精密工程, 2012, 20(11):2433-2438. http://www.cqvip.com/QK/92835A/201211/43959045.html

    CHEN F, YE X Y, WU K, et al.. Displacement measurement method based on integrated grating interferometry with two-wavelength lasers[J]. Opt. Precision Eng., 2012, 20(11):2433-2438.(in Chinese) http://www.cqvip.com/QK/92835A/201211/43959045.html
    [10] ZHANG X, LIU Z. Superlenses to overcome the diffraction limit[J]. Nat. Mater., 2008, 7:435-441. doi: 10.1038/nmat2141
    [11] 胡昌奎. 基于纳米金属光栅结构的表面等离子体共振传感研究[D]. 武汉: 华中科技大学, 2010. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D152529

    HU CH K. Study on surface plasmon resonance sensor basde on nano metallic surface-relief grating[D]. Wuhan: Huazhong University of Science & Technology, 2010. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D152529
    [12] 张善文, 巴音贺希格.宽波段金属光栅设计中闪耀波长对光栅异常的补偿效应[J].光学 精密工程, 2009, 17(5):990-1000. https://www.cnki.com.cn/qikan-GXJM200905012.html

    ZHANG SH W, BAYINHESHIG. Compensating effect of blazed wavelength to grating anomalies in design of broadband metallic diffraction gratings[J]. Opt. Precision Eng., 2009, 17(5):990-1000.(in Chinese) https://www.cnki.com.cn/qikan-GXJM200905012.html
    [13] RAETHER H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings[M]. Springer-Verlag Berlin Heidelberg, 1988.
    [14] 石顺祥, 刘继芳, 孙艳玲.光的电磁理论:光波的传播与控制[M].西安:西安电子科技大学出版社, 2006.

    SHI SH X, LIU J F, SUN Y L. Electromagnetic Theory of Light:Propagation and Control of Light[M]. Xi'an:University of Xi'an Electronic Science and Technology Press, 2006.(in Chinese)
    [15] GAZZPLA E, BRIGO L, ZACCO G, et al.. Coupled SPP modes on 1D plasmonic gratings in conical mounting[J]. Plasmonics, 2014, 9(4):867-876. doi: 10.1007/s11468-013-9624-9
  • 加载中
图(8)
计量
  • 文章访问数:  2294
  • HTML全文浏览量:  597
  • PDF下载量:  833
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-11
  • 修回日期:  2017-08-13
  • 刊出日期:  2018-02-01

目录

    /

    返回文章
    返回