留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

紧聚焦轴对称矢量光场波前调控及应用

王思聪 李向平

王思聪, 李向平. 紧聚焦轴对称矢量光场波前调控及应用[J]. 中国光学(中英文), 2016, 9(2): 185-202. doi: 10.3788/CO.20160902.0185
引用本文: 王思聪, 李向平. 紧聚焦轴对称矢量光场波前调控及应用[J]. 中国光学(中英文), 2016, 9(2): 185-202. doi: 10.3788/CO.20160902.0185
WANG Si-cong, LI Xiang-ping. Wavefront manipulation of tightly focused cylindrical vector beams and its applications[J]. Chinese Optics, 2016, 9(2): 185-202. doi: 10.3788/CO.20160902.0185
Citation: WANG Si-cong, LI Xiang-ping. Wavefront manipulation of tightly focused cylindrical vector beams and its applications[J]. Chinese Optics, 2016, 9(2): 185-202. doi: 10.3788/CO.20160902.0185

紧聚焦轴对称矢量光场波前调控及应用

详细信息
    通讯作者:

    王思聪 (1987-),男,辽宁沈阳人,博士,讲师,2010年、2015年于中山大学分别获得学士、博士学位,主要从事矢量光场调控、磁光存储等方面的研究。E-mail:wangsc@jnu.edu.cn

    李向平 (1979—),男,四川南充人,博士,研究员,博士生导师,2002年、2005年于南开大学分别获得学士、硕士学位,2009年于澳大利亚斯威本科技大学获得博士学位,2009年至2014年于澳大利亚斯威本科技大学承担博士后研究工作,主要从事微纳光子器件、大数据光存储等方面的研究。E-mail:xiangpingli@jnu.edu.cn

  • 中图分类号: TP394.1;TH691.9

Wavefront manipulation of tightly focused cylindrical vector beams and its applications

  • 摘要: 作为光波最重要的本征物理属性之一,光场偏振态在研究光与物质相互作用中占有重要地位。矢量光场的波前调控为其聚焦场提供了更加复杂、更加灵活可控的振幅、相位以及偏振态分布,丰富了光与物质相互作用的手段,为材料表征提供了传统线偏振、圆偏振光场所不可替代的研究方法,具有重要的物理意义和实际应用价值。本文将综述矢量光场最新的研究进展,详细介绍矢量光场的偏振态特性、产生方法,以及紧聚焦轴对称矢量光场波前调控在远场小尺度光斑的产生、磁光记录、单分子/颗粒取向探测、任意三维偏振态的产生、高密度数据存储、信息加密以及矢量光场波前重构等方面的重要应用。

     

  • 图 1  线偏振光、径向偏振光和旋向偏振光

    Figure 1.  Linear polarization,radial polarization and azimuthal polarization light

    图 2  利用液晶偏振转换器产生径向和旋向偏振光[41]

    Figure 2.  Generation of radially and azimuthally polarized light by using the LC polarization converter[41]

    图 3  基于4f系统相干分解与合成生成任意偏振态矢量光场实验装置图[42]

    Figure 3.  Schematic of the experimental setup for generating arbitrary vector beams through the 4f system[42]

    图 4  在空间光调制器上引入拓扑荷为1的螺旋位相因子时产生的矢量光场[42]

    Figure 4.  Generated vector beams by introducing a helical phase with a topological charge of 1 into the SLM[42]

    图 5  双层等离子体超材料表面示意图[46]

    Figure 5.  Schematic illustration of the plasmonic metasurfaces[46]

    图 6  (a)产生径向偏振光的等离子体超材料表面电镜图。其中,箭头表示偏振取向;(b)图(a)中心区域上下两层等离子体超材料表面放大图;(c)产生径向偏振光的实验装置示意图;(d)远场测得的径向偏振光电场强度分布图[46]

    Figure 6.  (a)SEM image of the plasmonic metasurface to generate a radially polarized beam. The arrows represent the designed distribution of the polarization direction; (b)Close-up view of the center part of (a) for the upper and bottom layers; (c)Schematic of the experimental setup for generating and detecting the radially polarized beam; (d)Measured far-field intensity profiles representing a radially polarized beam.[46]

    图 7  轴对称矢量光场紧聚焦示意图[63]

    Figure 7.  Schematic of tightly focusing of light fields with cylindrical symmetry[63]

    图 8  光场紧聚焦简化示意图[63]

    Figure 8.  Simplified schematic of tightly focusing of light fields[63]

    图 9  径向偏振光紧聚焦光场径向偏振分量归一化光场强度分布(a)x-y平面,(b)r-z平面;纵向偏振分量归一化光场强度分布(c)x-y平面,(d)r-z平面。坐标以入射光波长为单位

    Figure 9.  Normalized intensity of the radial component of a tightly focused radially polarized incident beam (a)at the focus and (b)through the focus; Normalized intensity of the longitudinal component (a)at the focus and (b)through the focus. The units are in wavelengths

    图 10  径向偏振光紧聚焦光场在焦平面上的归一化场强分布横截面图

    Figure 10.  Cross sections of the normalized focal field of a tightly focused radially polarized incident beam

    图 11  旋向偏振光紧聚焦光场归一化光场强度分布。坐标以入射光波长为单位

    Figure 11.  Normalized intensity of the focal field of a tightly focused azimuthally polarized incident beam (a)at the focus and (b)through the focus. The units are in wavelengths

    图 12  利用径向偏振光产生远场小尺度光斑实验装置图[68]

    Figure 12.  Experimental setup for generating the far-field small-sized light field by using the radially polarized incident beam[68]

    图 13  (a1)~(c1)透射光强分布;(a2)~(c2)重建光斑形貌;(a3)~(c3)理论光斑分布[68]

    Figure 13.  (a1)-(c1) Transmitting images,(a2)-(c2) reconstructed profiles,and (a3)-(c3) simulation profiles of the focal spots[68]

    图 14  (a)聚焦光斑横向尺寸和径向深度随γ的变化;(b)聚焦光斑三维体积和光盘三维存储密度随γ的变化;(c)实验装置示意图[71]

    Figure 14.  (a)Lateral area and the axial depth of the radially polarized beam as a function of γ; (b)focal volume and the storage density limit predicted by the calculation are plotted as a function of γ; (c)schematic illustration of the experimental configuration[71]

    图 15  (a)~(c)第一层至第三层光刻实验结果;(d)纵向横截面图[71]

    Figure 15.  (a)-(c)Recording layer 1 to layer 3; (d)Cross section in the longitudinal direction[71]

    图 16  (a)拓扑荷为±1旋向偏振涡旋光紧聚焦示意图,插图表示x偏振分量、y偏振分量以及总光场强度分布;(b)圆偏振光、旋向偏振涡旋光以及径向偏振光紧聚焦光斑横向面积随数值孔径的变化[33]

    Figure 16.  (a)Schematic illustration of tightly focusing an azimuthally polarized vortex beam with a topological charge of ±1. The insets are the intensity distributions of x component,y component and total field. (b)focal areas of a circularly polarized beam,an azimuthally polarized vortex beam with a topological charge of ±1 and a radially polarized beam as a function of NA[33]

    图 17  (a)利用双光子荧光成像对比圆偏振光和旋向偏振涡旋光紧聚焦光场的横向尺寸;(b)相较圆偏振光,旋向偏振涡旋光紧聚焦光场横向尺寸的改善程度随NA的变化[33]

    Figure 17.  (a)Comparison between the lateral sizes of the focal spots of a circularly polarized beam and an azimuthally polarized vortex beam through two-photon fluorescence imaging; (b)Improvement of the focal area of an azimuthally polarized vortex beam compared with that of a circular polarized beam at different values of NA[33]

    图 18  利用环形涡旋二元相位板产生超长纯纵向“磁针”的示意图[72]

    Figure 18.  Schematic illustration of the setup to generate the pure longitudinal magnetization needle by using annular vortex binary optics[72]

    图 19  y-z平面上,(a)归一化电场能量密度分布和(b)磁化强度分布图[72]

    Figure 19.  (a)Normalized electric energy density distribution and (b)magnetization distribution,in the axial plane[72]

    图 20  (a)探测金纳米棒三维取向示意图;(b)~(e)不同空间取向金纳米棒示意图及其双光子荧光模式理论模拟图;(f)~(i)双光子荧光实验结果图[76]

    Figure 20.  (a)Schematic illustration of detecting the orientations of gold nanorods; (b)-(e)Schematic 3D alignment of gold nanorods and their associated calculated fluorescence images; (f)-(i)Experimental results of two-photon fluorescence images of gold nanorods with the corresponding orientations[76]

    图 21  NV色心在直角坐标系中的取向示意图[77]

    Figure 21.  Coordinate system used to label the NV axis orientation[77]

    图 22  不同空间取向的NV色心荧光强度分布理论模拟结果[77]

    Figure 22.  Simulations of the fluorescence imaging of NV centers with different orientations[77]

    图 23  (a)在径向偏振光紧聚焦光场激发下,4种取向不同的NV色心共焦扫描成像;(b)利用径向偏振光测得的NV色心空间取向[77]

    Figure 23.  (a) Scanning confocal images of 4 NV centers with a radially polarized incident beam. (b)Depiction of the orientation of each of the NV centers determined by radial imaging.[77]

    图 24  (a)任意三维偏振态产生示意图;(b)~(d)3种不同偏振态[76]

    Figure 24.  (a)Schematic of the generation of arbitrary 3D polarization orientation. (b)-(d) Polarizations with three different orientations[76]

    图 25  三维偏振态理论模拟图[76]

    Figure 25.  Simulations of 3D polarizations[76]

    图 26  选择性激发和熔化金纳米棒[76]

    Figure 26.  Selective excitation and melting of gold nanorods[76]

    图 27  利用任意三维偏振态产生技术实现信息加密。(a)~(e)中的箭头表示五种预选好的偏振取向,第二行是利用相应偏振态入射光扫描样品所成的双光子荧光图像[76]

    Figure 27.  Demonstration of 3D polarization encryption. The arrows in (a)-(e) indicate the five configured polarization orientations used for the information encryption. The bottom panel shows the scanning two-photon fluorescence images of five patterns retrieved at corresponding polarization orientations[76]

    图 28  利用0/π二元相位板产生焦平面内任意取向线偏振紧聚焦场[78]

    Figure 28.  Generation of focal spots with arbitrarily orientated linear polarization state in the focal plane by using the 0/π binary phase plate[78]

    图 29  (a)线偏振态不同的多焦点阵列光强分布图;(b)相应的入射场相位分布[78]

    Figure 29.  (a)Intensity distributions of the multifocal array with different linear polarizations; (b)corresponding phase modulation[78]

    图 30  (a)矢量波前重建实验装置示意图;(b)利用多焦点偏振全息技术并通过矢量重建来实现偏振可辨成像的原理图[80]

    Figure 30.  (a)Schematic illustration of the experimental configuration of the reconstruction of vectorial wavefronts; (b)illustration of the principle of generating polarization-multiplexed phase holograms for the vectorial reconstruction of polarization discernible images[80]

  • [1]

    [2]
    [3]

    [4]

    [5]

    [6]

    [7]

    [8]

    [9]

    [10]

    [11]

    [12]

    [13]

    [14]

    [15]

    [16]

    [17]

    [18]

    [19]

    [20]

    [21]

    [22]

    [23]

    [24]

    [25]

    [26]

    [27]

    [28]

    [29]

    [30]

    [31]

    [32]

    [33]

    [34]

    [35]

    [36]

    [37]

    [38]

    [39]

    [40]

    [41]

    [42]

    [43]

    [44]

    [45]

    [46]

    [47]

    [48]

    [49]

    [50]

    [51]

    [52]

    [53]

    [54]

    [55]

    [56]

    [57]

    [58]

    [59]

    [60]

    [61]

    [62]

    [63]
    [64]

    [65]

    [66]

    [67]

    [68]

    [69]

    [70]

    [71]

    [72]

    [73]

    [74]

    [75]

    [76]

    [77]

    [78]

    [79]

    [80]

  • 加载中
图(30)
计量
  • 文章访问数:  2410
  • HTML全文浏览量:  491
  • PDF下载量:  1336
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-06
  • 修回日期:  2016-01-27
  • 刊出日期:  2016-01-25

目录

    /

    返回文章
    返回