留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Design optimization of a sensitivity-enhanced tilt sensor based on femtosecond fiber bragg grating

Nutsuglo Theophilus GUO Yong-xing ZHOU Wan-huan YU Hai-sheng REN Ru-hua SHEN Shun-an

NutsugloTheophilus, 郭永兴, 周万欢, 于海生, 任如华, 沈顺安. 基于飞秒光纤光栅的增敏型倾角传感器设计与优化[J]. 中国光学(中英文). doi: 10.37188/CO.EN-2024-0034
引用本文: NutsugloTheophilus, 郭永兴, 周万欢, 于海生, 任如华, 沈顺安. 基于飞秒光纤光栅的增敏型倾角传感器设计与优化[J]. 中国光学(中英文). doi: 10.37188/CO.EN-2024-0034
Nutsuglo Theophilus, GUO Yong-xing, ZHOU Wan-huan, YU Hai-sheng, REN Ru-hua, SHEN Shun-an. Design optimization of a sensitivity-enhanced tilt sensor based on femtosecond fiber bragg grating[J]. Chinese Optics. doi: 10.37188/CO.EN-2024-0034
Citation: Nutsuglo Theophilus, GUO Yong-xing, ZHOU Wan-huan, YU Hai-sheng, REN Ru-hua, SHEN Shun-an. Design optimization of a sensitivity-enhanced tilt sensor based on femtosecond fiber bragg grating[J]. Chinese Optics. doi: 10.37188/CO.EN-2024-0034

基于飞秒光纤光栅的增敏型倾角传感器设计与优化

详细信息
  • 中图分类号: TN253;TP212

Design optimization of a sensitivity-enhanced tilt sensor based on femtosecond fiber bragg grating

doi: 10.37188/CO.EN-2024-0034
Funds: This work was supported in part by the National Natural Science Foundation of China under Grant 52105558 and Grant 52075397, and in part by the Project of Guangdong Province Science and Technology Plan under Grant 2022A0505030019, and in part by the “14th Five Year Plan” Hubei Provincial Advantaged Characteristic Disciplines (Groups) Project of Wuhan University of Science and Technology under Grant 2023B0502.
More Information
    Author Bio:

    NUTSUGLO Theophilus (1993—) earned his B.Sc. in Mechanical Engineering from Kwame Nkrumah University of Science and Technology, Ghana, in 2018. He is currently pursuing M.Sc. in Mechanical Engineering at Wuhan University of Science and Technology, Wuhan. His research interests focus on fiber Bragg grating sensing technology for structural health monitoring. E-mail: tnutsuglo@yahoo.com

    GUO Yong-xing (1986—) received the Ph.D. degrees in measurement control technology and instruments from the National Engineering Laboratory for Fiber Optic Sensing Technology, Wuhan University of Technology, Wuhan, China, in 2014. He is currently a Professor with Wuhan University of Science and Technology. His research interests include optical fiber sensing technology for mechanical equipment, civil engineering, and robotics. Email: yongxing_guo@wust.edu.cn

    Corresponding author: yongxing_guo@wust.edu.cn
  • 摘要:

    目的:面向结构健康监测领域中的倾角信息高精度监测需求,本文提出了一种基于飞秒光纤光栅的灵敏度增强型倾角传感器。方法:首先,运用了静力学原理对倾角传感器进行结构设计,通过设置偏离梁中性轴的光纤光栅,实现光纤光栅应变线性增加,进而提高传感器的灵敏度;接着,通过建立光纤光栅应变、力和中性轴偏离距离之间的关系,确定了产生最大应变所对应的最佳距离;然后,基于此优化方案设计制造了倾角传感器的原型并进行了实验测试。结果:结果表明,倾角传感器最大灵敏度的光纤光栅偏离距离为4.4 mm,在−30°至30°的倾角范围内灵敏度达到了129.95 pm/°,线性度提高至0.9997,相较于传统的光纤光栅倾角传感器,灵敏度和线性度均得到了显著提升,同时还表现出了良好的重复性(误差<0.94%)、蠕变抗性(误差<0.30%)和温度稳定性(误差<0.90%)。结论:证明该倾角传感器在结构健康监测中拥有着优秀的应用潜力。传感器已成功应用于地下管道项目中,对项目中钢支撑结构的倾角与变形进行了长期监测,进一步证明了其工程安全监测应用价值。

     

  • 图 1  (a)传感器结构设计(b)初始悬臂设计结构(c)传感器组件

    Figure 1.  (a) Sensor structure design (b) Initial cantilever design structure (c) Sensor assembly

    图 2  模拟结果(a)有限元分析模拟的等效应变分布。(b)承受最大应变的表面

    Figure 2.  Simulation results (a) Equivalent strain distribution simulated by FEA. (b) Surfaces experiencing maximum strain

    图 3  悬臂梁设计结构

    Figure 3.  Cantilever design structure

    图 4  (a) 离中性轴的位置距离、作用力和应变之间的关系。(b) 表示1.0 N 的最大应变的放大图

    Figure 4.  (a) The relation between the position distance from the neutral axis, applied force, and strain. (b) amplified diagram showing the maximum strain of 1.0 N

    图 5  (a) 优化的悬臂结构设计 (b) 相应的质量块设计。

    Figure 5.  (a) Optimized cantilever structure design (b) corresponding mass block design.

    图 6  制作的物理传感器原型。(a) 带有预应力 FBG 的悬臂梁; (b) 传感器结构设计;(c) 装配好的传感器

    Figure 6.  Physical sensor prototype fabricated. (a) Cantilever with prestressed FBGs. (b) Sensor structure design. (c) Assembled sensor

    图 7  倾角传感器标定系统

    Figure 7.  Tilt sensor calibration system

    图 8  (a)四次倾斜测试中 FBG1 和 FBG2 的波长漂移量; (b)FBG1 和 FBG2 的平均波长漂移响应

    Figure 8.  (a)Wavelength shifts of FBG1 and FBG2 for the four tilt tests (b) Average wavelength shifts responses of FBG1 and FBG2.

    图 9  (a) FBG1 和 FBG2 的波长漂移差; (b) 优化设计和初始设计的波长偏移差平均值的线性拟合

    Figure 9.  (a)Wavelength shifts difference of FBG1 and FBG2 (b) Linear fit for the average values of the wavelength shift difference of the optimized and initial design.

    图 10  抗蠕变试验结果。

    Figure 10.  Creep resistance test results.

    图 11  温度补偿测试装置

    Figure 11.  Temperature compensation test setup

    图 12  温度补偿实验结果

    Figure 12.  Temperature compensation experimental results

    图 13  倾角传感器的安装。(a) 地下管道舱;(b) 倾角传感器 1; (c) 倾角传感器 2; (d) FBG 解调仪和电脑

    Figure 13.  Tilt sensor installation. (a) Underground pipeline bay. (b) Tilt sensor 1. (c) Tilt sensor 2. (d) FBG interrogator and PC

    图 14  从振动信号中提取中心值得到六个月监测期内的倾角曲线图(a)倾角传感器1;(b)倾角传感器2.

    Figure 14.  Tilt angle curve during the six-month monitoring period with the extraction of central value from the vibration signal for (a) Tilt sensor 1 and (b) Tilt sensor 2.

    图 15  提取的中心值。(a) 倾角传感器 1; (b) 倾角传感器 2

    Figure 15.  Extracted central value for (a) Tilt sensor 1 and (b) Tilt sensor 2

    表  1  Material properties of brass and silica

    Table  1.   Material properties of brass and silica

    Properties Young’s Modulus Poisson’s Ratio
    Brass 100 GPa 0.33
    Silica 73 GPa 0.17
    下载: 导出CSV

    表  2  Sensitivity and linearity comparison between the initial and optimized design.

    Table  2.   Sensitivity and linearity comparison between the initial and optimized design.

    Property Sensitivity (pm/°) Linearity
    Initial design 95.90 0.9994
    Optimized design 129.95 0.9997
    下载: 导出CSV
  • [1] GHANBARI M, YAZDANPANAH M J. Delay compensation of tilt sensors based on MEMS accelerometer using data fusion technique[J]. IEEE Sensors Journal, 2015, 15(3): 1959-1966. doi: 10.1109/JSEN.2014.2366874
    [2] LIN W Y, CHEN C H, LEE M Y. Design and implementation of a wearable accelerometer-based motion/tilt sensing internet of things module and its application to bed fall prevention[J]. Biosensors, 2021, 11(11): 428. doi: 10.3390/bios11110428
    [3] XIAO F, CHEN G S, HULSEY J L. Monitoring bridge dynamic responses using fiber Bragg grating tiltmeters[J]. Sensors, 2017, 17(10): 2390. doi: 10.3390/s17102390
    [4] NORGIA M, BONIOLO I, TANELLI M, et al. Optical sensors for real-time measurement of motorcycle tilt angle[J]. IEEE Transactions on Instrumentation and Measurement, 2009, 58(5): 1640-1649. doi: 10.1109/TIM.2008.2009421
    [5] ROMTRAIRAT P, VIRULSRI C, WATTANASIRI P, et al. A performance study of a wearable balance assistance device consisting of scissored-pair control moment gyroscopes and a two-axis inclination sensor[J]. Journal of Biomechanics, 2020, 109: 109957. doi: 10.1016/j.jbiomech.2020.109957
    [6] DIKSHIT A, SATYAM N. Real-time term monitoring of unstable slopes of Darjeeling Himalayas, India[C]. Proceedings of the 21st EGU General Assembly, EGU, 2019: 3818.
    [7] HA D W, PARK H S, CHOI S W, et al. A wireless MEMS-based inclinometer sensor node for structural health monitoring[J]. Sensors, 2013, 13(12): 16090-16104. doi: 10.3390/s131216090
    [8] LI K, ZHAO Y H, LI Y Q, et al. Fiber Bragg grating biaxial tilt sensor using one optical fiber[J]. Optik, 2020, 218: 164973. doi: 10.1016/j.ijleo.2020.164973
    [9] RAO K, LIU H F, WEI X L, et al. A high-resolution area-change-based capacitive MEMS tilt sensor[J]. Sensors and Actuators A: Physical, 2020, 313: 112191. doi: 10.1016/j.sna.2020.112191
    [10] ZHAN F, LI P L, FU J H, et al. Liquid metal-based angle detection sensor[J]. ACS Applied Electronic Materials, 2023, 5(7): 3571-3578. doi: 10.1021/acsaelm.3c00228
    [11] YAVSAN E. A planar coil-based novel two-channel differential inductive tilt sensor with a simple pendulum mechanism[J]. IEEE Sensors Journal, 2024, 24(5): 6286-6292. doi: 10.1109/JSEN.2024.3351952
    [12] ŁUCZAK S, ZAMS M, DĄBROWSKI B, et al. Tilt sensor with recalibration feature based on MEMS accelerometer[J]. Sensors, 2022, 22(4): 1504. doi: 10.3390/s22041504
    [13] OLARU R, COTAE C. Tilt sensor with magnetic liquid[J]. Sensors and Actuators A: Physical, 1997, 59(1-3): 133-135. doi: 10.1016/S0924-4247(97)80162-8
    [14] SAHOTA J K, GUPTA N, DHAWAN D. Fiber Bragg grating sensors for monitoring of physical parameters: a comprehensive review[J]. Optical Engineering, 2020, 59(6): 060901.
    [15] RAO Y J. In-fibre Bragg grating sensors[J]. Measurement Science and Technology, 1997, 8(4): 355-375. doi: 10.1088/0957-0233/8/4/002
    [16] JIANG SH CH, WANG J, SUI Q M. Distinguishable circumferential inclined direction tilt sensor based on fiber Bragg grating with wide measuring range and high accuracy[J]. Optics Communications, 2015, 355: 58-63. doi: 10.1016/j.optcom.2015.05.055
    [17] MA G M, LI CH R, QUAN J T, et al. A fiber Bragg grating tension and tilt sensor applied to icing monitoring on overhead transmission lines[J]. IEEE Transactions on Power Delivery, 2011, 26(4): 2163-2170. doi: 10.1109/TPWRD.2011.2157947
    [18] LIANG M F, FANG X Q, LI SH, et al. A fiber Bragg grating tilt sensor for posture monitoring of hydraulic supports in coal mine working face[J]. Measurement, 2019, 138: 305-313. doi: 10.1016/j.measurement.2019.02.060
    [19] YANG R G, BAO H L, ZHANG SH Q, et al. Simultaneous measurement of tilt angle and temperature with pendulum-based fiber Bragg grating sensor[J]. IEEE Sensors Journal, 2015, 15(11): 6381-6384. doi: 10.1109/JSEN.2015.2458894
    [20] GUO Y X, ZHANG D SH, ZHOU Z D, et al. Cantilever based FBG vibration transducer with sensitization structure[J]. Optoelectronics Letters, 2013, 9(6): 410-413. doi: 10.1007/s11801-013-3139-7
    [21] NUTSUGLO T, GUO CH CH, LI Q, et al. Sensitivity-enhanced tilt sensor based on femtosecond fiber bragg grating[C]. Proceedings of 2023 International Conference on Sensing, Measurement & Data Analytics in the era of Artificial Intelligence, IEEE, 2023: 1-6.
    [22] GUO Y X, HU P, XIONG L, et al. Design and investigation of a fiber Bragg grating tilt sensor with vibration damping[J]. IEEE Sensors Journal, 2023, 23(3): 2193-2203. doi: 10.1109/JSEN.2022.3229397
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  108
  • HTML全文浏览量:  41
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-12
  • 录用日期:  2024-12-27
  • 网络出版日期:  2025-01-08

目录

    /

    返回文章
    返回