留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Incident angle-tuned filter based on 1D resonant waveguide grating in full conical mounting

FAN Li-na SHA Jin-qiao CAO Zhao-liang

樊丽娜, 沙金巧, 曹召良. 全圆锥入射下基于一维共振波导光栅的入射角调谐滤波器[J]. 中国光学(中英文), 2024, 17(2): 493-500. doi: 10.37188/CO.EN-2023-0030
引用本文: 樊丽娜, 沙金巧, 曹召良. 全圆锥入射下基于一维共振波导光栅的入射角调谐滤波器[J]. 中国光学(中英文), 2024, 17(2): 493-500. doi: 10.37188/CO.EN-2023-0030
FAN Li-na, SHA Jin-qiao, CAO Zhao-liang. Incident angle-tuned filter based on 1D resonant waveguide grating in full conical mounting[J]. Chinese Optics, 2024, 17(2): 493-500. doi: 10.37188/CO.EN-2023-0030
Citation: FAN Li-na, SHA Jin-qiao, CAO Zhao-liang. Incident angle-tuned filter based on 1D resonant waveguide grating in full conical mounting[J]. Chinese Optics, 2024, 17(2): 493-500. doi: 10.37188/CO.EN-2023-0030

全圆锥入射下基于一维共振波导光栅的入射角调谐滤波器

详细信息
  • 中图分类号: O436.1;TN25

Incident angle-tuned filter based on 1D resonant waveguide grating in full conical mounting

doi: 10.37188/CO.EN-2023-0030
Funds: Supported by Jiangsu Key Disciplines of the Fourteenth Five-Year Plan (No. 2021135); Key Research and De-Velopment Project of the Department of Science and Technology of Jilin Province (No. 20220203033SF)
More Information
    Author Bio:

    Fan Li-na (1980—), female, Yuci city, Shanxi province, Ph.D., received her Ph.D. from the University of Shanghai for Science and Technology in 2020 and is mainly engaged in research on micro-nano optical devices. E-mail: lnfan@mail.usts.edu.cn

    Corresponding author: lnfan@mail.usts.edu.cn
  • 摘要:

    本文提出并展示了一种全圆锥入射下基于一维共振波导光栅的入射角调谐滤波器。通过优化光栅层厚度,使其能够在支持TE导模的同时抑制TM导模。本文设计的滤波器呈现出可调谐的单一反射峰, 峰值反射率理论上可达100%。当入射角改变时,共振波长可以由642.5 nm调节至484.6 nm。该反射峰是由一级衍射波与TE导模(基模)之间的共振效应所产生的。同样地,通过按比例增加光栅层的厚度和周期可实现应用于更高动态范围的可调谐滤波器。

     

  • Figure 1.  Schematic diagram of 1D RWG in full conical mounting. The structural parameters are nH = 1.8, nL = 1.63, ns = 1.46, nc = 1.0, d = 102 nm, f = 0.5, and Λ = 440 nm

    Figure 2.  Calculated reflection spectra with the incident angle variation when the TM-polarized wave irradiates 1D RWG in full conical mounting

    Figure 3.  Internal electric field (Ey) profile for (a) λR = 642.5 nm (θ = 0°); (b) λR = 578.6 nm (θ = 40°); (c) λR = 484.6 nm (θ = 80°)

    Figure 4.  Calculated resonant positions based on the eigenvalue equation of fundamental TE guided mode at different incident angles

    Figure 5.  Calculated resonant positions based on the eigenvalue equation of fundamental TE and TM guided modes at different incident angles

    Figure 6.  Reflection spectra of equivalent multilayer stacks at different incident angles. (a) TE-polarized incidence; (b) TM-polarized incidence

    Figure 7.  Resonant wavelength as a function of the incident angle

    Figure 8.  Resonant wavelength as a function of the k value and the incident angle

  • [1] FENG S Q, LIU T T, CHEN W Y, et al. Enhanced sum-frequency generation from etchless lithium niobate empowered by dual quasi-bound states in the continuum[J]. Science China Physics, Mechanics & Astronomy, 2023, 66(12): 124214.
    [2] WU F, WU J J, GUO ZH W, et al. Giant enhancement of the Goos-Hänchen shift assisted by quasibound states in the continuum[J]. Physical Review Applied, 2019, 12(1): 014028. doi: 10.1103/PhysRevApplied.12.014028
    [3] QIAN L Y, WANG K N, ZHU W, et al. Enhanced sensing ability in a single-layer guided-mode resonant optical biosensor with deep grating[J]. Optics Communications, 2019, 452: 273-280. doi: 10.1016/j.optcom.2019.07.047
    [4] HSU H Y, LAN Y H, HUANG CH SH. A gradient grating period guided-mode resonance spectrometer[J]. IEEE Photonics Journal, 2018, 10(1): 4500109.
    [5] FEHREMBACH A L, SHARSHAVINA K, LEMARCHAND F, et al. 2 × 1D crossed strongly modulated gratings for polarization independent tunable narrowband transmission filters[J]. Journal of the Optical Society of America A, 2017, 34(2): 234-240. doi: 10.1364/JOSAA.34.000234
    [6] QIAN L Y, ZHU W, WANG K N, et al. Polarization-controlled reflectance tunable narrow-band filter with single channel based on sparse dielectric grating[J]. Optics Communications, 2019, 443: 123-128. doi: 10.1016/j.optcom.2019.03.010
    [7] KUO W K, HSU C J. Two-dimensional grating guided-mode resonance tunable filter[J]. Optics Express, 2017, 25(24): 29642-29649. doi: 10.1364/OE.25.029642
    [8] FERRARO A, TANGA A A, ZOGRAFOPOULOS D C, et al. Guided mode resonance flat-top bandpass filter for terahertz telecom applications[J]. Optics Letters, 2019, 44(17): 4239-4242. doi: 10.1364/OL.44.004239
    [9] SAKAT E, VINCENT G, GHENUCHE P, et al. Free-standing guided-mode resonance band-pass filters: from 1D to 2D structures[J]. Optics Express, 2012, 20(12): 13082-13090. doi: 10.1364/OE.20.013082
    [10] SALEEM M R, ZHENG D D, BAI B F, et al. Replicable one-dimensional non-polarizing guided mode resonance gratings under normal incidence[J]. Optics Express, 2012, 20(15): 16974-16980. doi: 10.1364/OE.20.016974
    [11] FANG CH L, DAI B, LI ZH, et al. Tunable guided-mode resonance filter with a gradient grating period fabricated by casting a stretched PDMS grating wedge[J]. Optics Letters, 2016, 41(22): 5302-5305. doi: 10.1364/OL.41.005302
    [12] FENG SH F, ZHANG X P, SONG J Y, et al. Theoretical analysis on the tuning dynamics of the waveguide-grating structures[J]. Optics Express, 2009, 17(2): 426-436. doi: 10.1364/OE.17.000426
    [13] CHAUDHURI R R, ENEMUO A N, SONG Y, et al. Polymer based resonant waveguide grating photonic filter with on-chip thermal tuning[J]. Optics Communications, 2018, 418: 1-9. doi: 10.1016/j.optcom.2018.02.045
    [14] WANG C T, HOU H H, CHANG P C, et al. Full-color reflectance-tunable filter based on liquid crystal cladded guided-mode resonant grating[J]. Optics Express, 2016, 24(20): 22892-22898. doi: 10.1364/OE.24.022892
    [15] UDDIN M J, MAGNUSSON R. Efficient guided-mode-resonant tunable color filters[J]. IEEE Photonics Technology Letters, 2012, 24(17): 1552-1554. doi: 10.1109/LPT.2012.2208453
    [16] COVES Á, GIMENO B, ANDRÉS M V. Oblique incidence and polarization effects in coupled gratings[J]. Optics Express, 2012, 20(23): 25454-25460. doi: 10.1364/OE.20.025454
    [17] YUKINO R, SAHOO P K, SHARMA J, et al. Wide wavelength range tunable one-dimensional silicon nitride nano-grating guided mode resonance filter based on azimuthal rotation[J]. AIP Advances, 2017, 7(1): 015313. doi: 10.1063/1.4975344
    [18] REN ZH B, SUN Y H, HU J SH, et al. Nonpolarizing guided-mode resonance filter with high tolerance of conical angle[J]. Journal of Optics, 2018, 20(8): 085601. doi: 10.1088/2040-8986/aacdd6
    [19] WANG D Y, WANG Q K, WU M T. Spectral characteristics of a guided mode resonant filter with planes of incidence[J]. Applied Optics, 2018, 57(27): 7793-7797. doi: 10.1364/AO.57.007793
    [20] WANG W, CAI W, SHI ZH, et al. Polarization-insensitive one-dimensional guided-mode resonance filter operating at conical mounting[J]. Optics Letters, 2018, 43(21): 5226-5229. doi: 10.1364/OL.43.005226
    [21] KODALI A K, SCHULMERICH M, IP J, et al. Narrowband midinfrared reflectance filters using guided mode resonance[J]. Analytical Chemistry, 2010, 82(13): 5697-5706. doi: 10.1021/ac1007128
    [22] LI Y Y, HU CH, WU Y CH, et al. Numerical investigation of one-dimensional nonpolarizing guided-mode resonance gratings with conformal dielectric films[J]. Optics Express, 2013, 21(1): 345-357. doi: 10.1364/OE.21.000345
    [23] FAN L N, JIA K H, MA J SH. Transmission filter controlled by incident conditions in single-layer waveguide grating structures[J]. Applied Optics, 2019, 58(31): 8371-8375. doi: 10.1364/AO.58.008371
    [24] WANG D Y, WANG Q K, LIU D M. Polarization-insensitive filter for incidence between classic and full conical mountings[J]. IEEE Photonics Technology Letters, 2018, 30(5): 495-498. doi: 10.1109/LPT.2018.2799950
    [25] LACOUR D, GRANET G, PLUMEY J P, et al. Polarization independence of a one-dimensional grating in conical mounting[J]. Journal of the Optical Society of America A, 2003, 20(8): 1546-1552. doi: 10.1364/JOSAA.20.001546
    [26] MOHARAM M G, GAYLORD T K. Diffraction analysis of dielectric surface-relief gratings[J]. Journal of the Optical Society of America, 1982, 72(10): 1385-1392. doi: 10.1364/JOSA.72.001385
    [27] MAGNUSSON R, WANG S S. New principle for optical filters[J]. Applied Physics Letters, 1992, 61(9): 1022-1024. doi: 10.1063/1.107703
    [28] WANG S S, MAGNUSSON R. Theory and applications of guided-mode resonance filters[J]. Applied Optics, 1993, 32(14): 2606-2613. doi: 10.1364/AO.32.002606
  • 加载中
图(8)
计量
  • 文章访问数:  423
  • HTML全文浏览量:  108
  • PDF下载量:  219
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-19
  • 修回日期:  2023-12-05
  • 录用日期:  2023-12-29
  • 网络出版日期:  2024-01-09

目录

    /

    返回文章
    返回