留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

All-optical logic gate based on nonlinear effects of two-dimensional photonic crystals

WU Rong YANG Jian-ye ZHANG Hao-chen

吴蓉, 杨建业, 张皓辰. 基于二维光子晶体非线性效应的全光逻辑门[J]. 中国光学(中英文), 2024, 17(2): 456-467. doi: 10.37188/CO.EN-2023-0021
引用本文: 吴蓉, 杨建业, 张皓辰. 基于二维光子晶体非线性效应的全光逻辑门[J]. 中国光学(中英文), 2024, 17(2): 456-467. doi: 10.37188/CO.EN-2023-0021
WU Rong, YANG Jian-ye, ZHANG Hao-chen. All-optical logic gate based on nonlinear effects of two-dimensional photonic crystals[J]. Chinese Optics, 2024, 17(2): 456-467. doi: 10.37188/CO.EN-2023-0021
Citation: WU Rong, YANG Jian-ye, ZHANG Hao-chen. All-optical logic gate based on nonlinear effects of two-dimensional photonic crystals[J]. Chinese Optics, 2024, 17(2): 456-467. doi: 10.37188/CO.EN-2023-0021

基于二维光子晶体非线性效应的全光逻辑门

详细信息
  • 中图分类号: TN256

All-optical logic gate based on nonlinear effects of two-dimensional photonic crystals

doi: 10.37188/CO.EN-2023-0021
Funds: Supported by Natural Science Foundation of Gansu Province (No. 21JR7RA289)
More Information
    Author Bio:

    WU Rong (1968—), female, born in Wu-wei, Gansu Province, Professor, School of Electronic and Information Engineering, Lanzhou Jiaotong University. Her research interest is on semiconductor integrated circuit. E-mail: 759165367@qq.com

    YANG Jian-ye (1999—), male, born in Zhouqu Country, Gansu Province, Postgraduate, His research interests are on mode division multiplexing integrated devices and all-optical logic devices. E-mail: 1114332211@qq.com

    Corresponding author: 1114332211@qq.com
  • 摘要:

    基于光子晶体非线性效应和线性干涉效应设计了全光异或、非和与逻辑门。应用反演定理拆分较复杂逻辑表达式,通过级联组合设计了全光或非门和四输入与门逻辑器件。本文利用时域有限差分法进行仿真模拟计算,对非线性环形腔的耦合特性进行了分析,然后在信号波长为1.47 μm条件下设计了上述逻辑器件,且通过可扩展输入端可设计出更多输入的器件。分析了信号功率对四输入与逻辑器件逻辑功能的影响。结果表明信号光源功率在1.1 W/μm2到3.4 W/μm2之间时,输出端的逻辑对比度均大于10 dB。所设计器件响应时间最短仅1.6 ps,占用面积小,易于扩展与集成,在光处理系统和集成光路中有较大应用前景。

     

  • Figure 1.  Characteristics of nonlinear ring cavity and its output at each port in the 1.42−1.52 μm band. (a) Structure and (b) normalized power of output port

    Figure 2.  Steady-state electric field diagrams and normalized powers of output ports when incident light source has different powers. (a) Electric field diagram at low power, (b) electric field diagram at high power, (c) output power at low power, and (d) output power at high power

    Figure 3.  XOR gate structure

    Figure 4.  Steady-state electric field diagrams and normalized power curves when input logic is '01', '10' and '11' respectively. (a)−(c) are electric field diagrams when input logic is (a) '01', (b) '10', and (c) '11'; (d)−(f) are normalized power curves when input logic is (d) '01', (e) '10', and (f) '11'

    Figure 5.  Two-input AND gate structure

    Figure 6.  Steady-state electric field diagrams and normalized output powers when input logic is ‘01’、 ‘11’. (a)−(b) are electric field diagrams when input logic is (a) '01' and (b) '11'; (c)−(d) are normalized output curves when input logic is (c) '01' and (d) '11'

    Figure 7.  NOR gate structure

    Figure 8.  Steady-state electric field diagrams and normalized output powers when input is ‘00’、 ‘10’、and ‘11’. (a)−(c) are electric field diagrams when input logic is (a) '00', (b) '10', and (c) '11'; (d)−(f) are normalized output powers when input logic is (d) '00', (e) '10', and (f) '11'

    Figure 9.  Four-input AND gate structure

    Figure 10.  Steady-state electric field diagrams and normalized output powers when input is ‘1000’, ‘1100’, ‘1110’ and ‘1111’. (a)−(d) are electric field diagrams when input is (a) '1000', (b) '1100' , (c) '1110', and (d) '1111' . (e)−(f) are normalized output powers when input is (e) '1000', (f) '1100', (g) '1110', and (h) '1111'

    Figure 11.  Influence of light source power on device logic function

    Table  1.   Truth table of two-input AND gate

    Input (Normalized power) Output (Normalized power)
    I1 I2 O1
    0 1 0.0168
    1 1 1.0440
    下载: 导出CSV

    Table  2.   Truth table of NOR Gate

    Input (Normalized power) Output (Normalized power)
    I1 I2 O1
    0 0 0.4830
    1 0 0.0015
    1 1 0.0011
    下载: 导出CSV

    Table  3.   Truth table of four-input AND gate

    Input (Normalized power) Output (Normalized power)
    I1 I2 I3 I4 O1
    1 0 0 0 0.002
    1 1 0 0 0.015
    1 1 1 0 0.039
    1 1 1 1 1.221
    下载: 导出CSV

    Table  4.   Summarized features of proposed structure and previous works

    Works/yearsContrast ratio(dB)
    XORANDNORFour-input AND
    Ref[28]/202050.87.74.6-
    Ref[29]/202211.66.25.9-
    Ref[30]/20238.712.87.7-
    This work15.717.925.115.0
    下载: 导出CSV
  • [1] MEKIS A, MEIER M, DODABALAPUR A, et al. Lasing mechanism in two-dimensional photonic crystal lasers[J]. Applied Physics A, 1999, 99(1): 111-114.
    [2] YOSHIKUNI Y. Semiconductor optical devices[J]. IEEJ Transactions on Electronics Information and Systems, 2008, 113(4): 231-237.
    [3] CHANDERKANTA, CHEN N K, KAUSHIK B K, et al. Implementation of reversible Peres gate using electro-optic effect inside lithium-niobate based Mach-Zehnder interferometers[J]. Optics & Laser Technology, 2019, 117: 28-37.
    [4] LIU Q, LI N, TAN CH H. All-optical logic gate based on manipulation of surface polaritons solitons via external gradient magnetic fields[J]. Physical Review A, 2020, 101(2): 023818. doi: 10.1103/PhysRevA.101.023818
    [5] HUANG Y J, XIAO T X, CHEN SH, et al. All-optical controlled-NOT logic gate achieving directional asymmetric transmission based on metasurface doublet[J]. Opto-Electronic Advances, 2023, 6(7): 220073. doi: 10.29026/oea.2023.220073
    [6] ICHIOKA Y, TANIDA J. Optical parallel logic gates using a shadow-casting system for optical digital computing[J]. Proceedings of the IEEE, 1984, 72(7): 787-801. doi: 10.1109/PROC.1984.12939
    [7] YATAGAI T. Optical space-variant logic-gate array based on spatial encoding technique[J]. Optics Letters, 1986, 11(4): 260-262. doi: 10.1364/OL.11.000260
    [8] KOTB A, GUO CH L. 120 Gb/s all-optical NAND logic gate using reflective semiconductor optical amplifiers[J]. Journal of Modern Optics, 2020, 67(12): 1138-1144. doi: 10.1080/09500340.2020.1813342
    [9] KOTB A. Simulation of high quality factor all-optical logic gates based on quantum-dot semiconductor optical amplifier at 1 Tb/s[J]. Optik, 2016, 127(1): 320-325. doi: 10.1016/j.ijleo.2015.10.093
    [10] WANG J, SUN Q ZH, SUN J Q. All-optical 40 Gbit/s CSRZ-DPSK logic XOR gate and format conversion using four-wave mixing[J]. Optics Express, 2009, 17(15): 12555-12563. doi: 10.1364/OE.17.012555
    [11] LIU H Q, QUAN ZH Q, CHENG Y, et al. Ultra-compact universal linear-optical logic gate based on single rectangle plasmonic slot nanoantenna[J]. Plasmonics, 2021, 16(3): 973-980. doi: 10.1007/s11468-020-01363-9
    [12] SUI J Y, ZHANG D, ZHANG H F. Logical OR operation and magnetic field sensing based on layered topology[J]. Journal of Physics D:Applied Physics, 2022, 55(41): 415001. doi: 10.1088/1361-6463/ac84e9
    [13] SUI J Y, DONG R Y, LIAO S Y, et al. Janus metastructure based on magnetized plasma material with and logic gate and multiple physical quantity detection[J]. Annalen der Physik, 2023, 535(3): 2200509. doi: 10.1002/andp.202200509
    [14] TANNAZ S, MORADKHANI M, TAHERZADE M, et al. Ultracompact, high-extinction ratio XOR, OR, and Feynman logic gates based on plasmonic metal–insulator–metal directional couplers[J]. Applied Optics, 2023, 62(3): 644-653. doi: 10.1364/AO.478011
    [15] HUANG Y H, SHI M H, YU A D, et al. Design of multifunctional all-optical logic gates based on photonic crystal waveguides[J]. Applied Optics, 2023, 62(3): 774-781. doi: 10.1364/AO.473410
    [16] JIAO SH M, LIU J W, LIWEN ZHANG L W, et al. All-optical logic gate computing for high-speed parallel information processing[J]. Opto-Electronic Science, 2022, 1(9): 220010. doi: 10.29026/oes.2022.220010
    [17] HOU H Q, YANG Y B, WU M, et al. Solar-blind ultraviolet band-pass filter based on coupling of photonic crystal defects[J]. Acta Optica Sinica, 2023, 43(9): 0923003. (in Chinese). doi: 10.3788/AOS221815
    [18] HU Y C, CHEN H M. Optical add-drop multiplexer for dense wavelength division multiplexing system based on photonic crystals[J]. Acta Optica Sinica, 2023, 43(2): 0223002. (in Chinese). doi: 10.3788/AOS220857
    [19] WU R, LIU Z, YAN Q B, et al. Eight-channel photonic-crystal wavelength-division multiplexer[J]. Laser & Optoelectronics Progress, 2019, 56(9): 091302. (in Chinese).
    [20] YANG Y H, YANG F L, LU L, et al. Research on interferometer photonic crystal fiber optic gyroscope technology[J]. Acta Optica Sinica, 2018, 38(3): 0328004. (in Chinese). doi: 10.3788/AOS201838.0328004
    [21] WANG J L, LIU Y, CHEN H M. Design on terahertz polarization beam splitter based on self-collimating effect of photonic crystal[J]. Acta Optica Sinica, 2018, 38(4): 0423001. (in Chinese). doi: 10.3788/AOS201838.0423001
    [22] CHHIPA M K, MADHAV B T P, SUTHAR B, et al. Ultra-compact with improved data rate optical encoder based on 2D linear photonic crystal ring resonator[J]. Photonic Network Communications, 2022, 44(1): 30-40. doi: 10.1007/s11107-022-00975-x
    [23] CHHIPA M K, MADHAV B T P, ROBINSON S, et al. Realization of all-optical logic gates using a single design of 2D photonic band gap structure by square ring resonator[J]. Optical Engineering, 2021, 60(7): 075104.
    [24] PARANDIN F, HEIDARI F, RAHIMI Z, et al. Two-dimensional photonic crystal biosensors: a review[J]. Optics & Laser Technology, 2021, 144: 107397.
    [25] GHARSALLAH Z, NAJJAR M, SUTHAR B, et al. High sensitivity and ultra-compact optical biosensor for detection of UREA concentration[J]. Optical and Quantum Electronics, 2018, 50(6): 249. doi: 10.1007/s11082-018-1520-2
    [26] ALAEI S, SEIFOURI M, BABAABBASI G, et al. Numerical investigation on self-heating effect in 1.3 µm quantum dot photonic crystal microstructure VCSELs[J]. The European Physical Journal Plus, 2022, 137(4): 515. doi: 10.1140/epjp/s13360-022-02731-6
    [27] JIANG Y CH, LIU SH B, ZHANG H F, et al. Realization of all optical half-adder based on self-collimated beams by two-dimensional photonic crystals[J]. Optics Communications, 2015, 348: 90-94. doi: 10.1016/j.optcom.2015.03.011
    [28] ZHOU X P, SHU J. Novel 1×3 splitter based on photonic crystal self-collimation effect[J]. Acta Optica Sinica, 2013, 33(4): 0423002. (in Chinese). doi: 10.3788/AOS201333.0423002
    [29] BOUAOUINA M S, LEBBAL M R, BOUCHEMAT T, et al. High contrast ratio for full-designs optical logic gates based on photonic crystal ring resonator[J]. Frequenz, 2020, 74(9-10): 277-285. doi: 10.1515/freq-2020-0011
    [30] CABALLERO L P, POVINELLI M L, RAMIREZ J C, et al. Photonic crystal integrated logic gates and circuits[J]. Optics Express, 2022, 30(2): 1976-1993. doi: 10.1364/OE.444714
    [31] VADIVU N S, TRABELSI Y, JAYASINGH J R, et al. A novel design of all logic gates in honeycomb photonic crystal and independent of polarization modes (TE/TM) for optical integrated circuit applications[J]. Optics and Lasers in Engineering, 2023, 161: 107345. doi: 10.1016/j.optlaseng.2022.107345
    [32] SALIMZADEH S, ALIPOUR-BANAEI H. A novel proposal for all optical 3 to 8 decoder based on nonlinear ring resonators[J]. Journal of Modern Optics, 2018, 65(17): 2017-2024. doi: 10.1080/09500340.2018.1489077
    [33] DAGHOOGHI T, SOROOSH M, ANSARI-ASL K. A low-power all optical decoder based on photonic crystal nonlinear ring resonators[J]. Optik, 2018, 174: 400-408. doi: 10.1016/j.ijleo.2018.08.090
    [34] GANESHA K V S, PATIL P S, MAIDUR S R, et al. Sprayed nanocrystalline ZMS thin films for nonlinear optical device applications[J]. Optical Materials, 2019, 96: 109304. doi: 10.1016/j.optmat.2019.109304
    [35] MORADI R. All optical half subtractor using photonic crystal based nonlinear ring resonators[J]. Optical and Quantum Electronics, 2019, 51(4): 119. doi: 10.1007/s11082-019-1831-y
    [36] PASHAMEHR A, ZAVVARI M, ALIPOUR-BANAEI H. All-optical AND/OR/NOT logic gates based on photonic crystal ring resonators[J]. Frontiers of Optoelectronics, 2016, 9(4): 578-584. doi: 10.1007/s12200-016-0513-7
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  135
  • HTML全文浏览量:  76
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-30
  • 修回日期:  2023-10-07
  • 录用日期:  2023-10-18
  • 网络出版日期:  2023-11-29

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!