留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Optical simulation design of surface mounted device beads for wide beam and high uniformity display

WEI Wei CHEN Zhi-zhong GUO Hao-zhong JIA Chuan-yu FANG Fang ZOU Jun FANG Qian WU You SUN Ming-hao LI Qian KUANG Yu-han YIN Qi-kai ZHANG Guo-yi

魏伟, 陈志忠, 郭浩中, 贾传宇, 方方, 邹军, 房倩, 吴优, 孙铭浩, 李倩, 匡宇涵, 殷琦凯, 张国义. 宽光束、高均匀性显示贴片灯珠的光学仿真设计[J]. 中国光学(中英文), 2024, 17(1): 217-225. doi: 10.37188/CO.EN-2023-0017
引用本文: 魏伟, 陈志忠, 郭浩中, 贾传宇, 方方, 邹军, 房倩, 吴优, 孙铭浩, 李倩, 匡宇涵, 殷琦凯, 张国义. 宽光束、高均匀性显示贴片灯珠的光学仿真设计[J]. 中国光学(中英文), 2024, 17(1): 217-225. doi: 10.37188/CO.EN-2023-0017
WEI Wei, CHEN Zhi-zhong, GUO Hao-zhong, JIA Chuan-yu, FANG Fang, ZOU Jun, FANG Qian, WU You, SUN Ming-hao, LI Qian, KUANG Yu-han, YIN Qi-kai, ZHANG Guo-yi. Optical simulation design of surface mounted device beads for wide beam and high uniformity display[J]. Chinese Optics, 2024, 17(1): 217-225. doi: 10.37188/CO.EN-2023-0017
Citation: WEI Wei, CHEN Zhi-zhong, GUO Hao-zhong, JIA Chuan-yu, FANG Fang, ZOU Jun, FANG Qian, WU You, SUN Ming-hao, LI Qian, KUANG Yu-han, YIN Qi-kai, ZHANG Guo-yi. Optical simulation design of surface mounted device beads for wide beam and high uniformity display[J]. Chinese Optics, 2024, 17(1): 217-225. doi: 10.37188/CO.EN-2023-0017

宽光束、高均匀性显示贴片灯珠的光学仿真设计

详细信息
  • 中图分类号: O439

Optical simulation design of surface mounted device beads for wide beam and high uniformity display

doi: 10.37188/CO.EN-2023-0017
Funds: Supported by “Dr. Shuangchuang” in the Jiangsu Province in 2021 (No.JSSCBS20211145); the 2022 open project of Jiangsu Intelligent Optoelectronic Device and Measurement and Control Engineering Research Center
More Information
    Author Bio:

    WEI Wei (1980—), male, Ph.D., lecturer at Yancheng Teachers University, mainly engaged in micro-LED device lighting design. E-mail: weiweipaper@126.com

    Corresponding author: weiweipaper@126.com
  • 摘要:

    本文通过分析目前显示器用的高均匀宽角度灯珠的光学要求,采用新型非朗伯(non-Lambertian)分布封装Micro-LED芯片,实现了宽光束、高均匀性的微型LED芯片光珠。分析了在不同封装倾角、封装高度、封装材料、封装支架材料、蓝宝石厚度和图案化蓝宝石衬底尺寸下,使用由不同封装材料(铜、钛、铝和银)和材料类型(完全反射和完全吸收)组成的支架模拟固定灯珠的光输出效率和出光角度的变化情况。研究发现通过调整材料、芯片和封装参数,可以得到一个、两个或三个光束,具有贴片灯珠的宽角度、高均匀性的远场光分布特性,满足当前LED和LCD的显示要求。

     

  • Figure 1.  Top view of the LED device structure rendered using TracePro software

    Figure 2.  Sectional view of the unpacked micro-LED device structure

    Figure 3.  Sectional view of the packaged 5050 SMD beads.

    Figure 4.  Schematic diagram of far-field light distributions of 5050 surface-mount technology (SMT) beads with Al brackets and PMMA packaging material at different inclination angles

    Figure 5.  Far-field light distributions of 5050 SMT beads with different packaging heights, Al brackets, and PMMA packaging materials at an inclination of 85°.

    Figure 6.  Far-field light distributions of 5050 SMT beads with different support materials, a packaging height of 0.08 mm, and Al support at an inclination of 85°

    Figure 7.  Far-field light distributions of 5050 SMT beads with different material supports and silicone, a packaging height of 0.08 mm, and a sapphire thickness of 0.05 mm at an inclination angle of 85°

    Figure 8.  Far-field light distributions of 5050 SMT beads with different chip sizes and Al brackets, and PMMA packaging materials at an inclination angle of 85°

    Figure 9.  Far-field light distributions of 5050 SMT beads with a sapphire thickness of 30 μm Al brackets, and PMMA packaging materials at an inclination angle of 85°.

    Figure 10.  Far-field light distributions of 5050 SMT beads with different sapphire thicknesses, Al brackets and PMMA packaging materials at an inclination of 85°

    Table  1.   Simulated optical parameters of different bracket materials

    Material Refractive index Absorption index/(mm−1)
    Cu 1.15 65889
    Al 0.7278 152263
    Ag 0.886 113067
    Ti 1.71 62667
    Perfect absorption - 1
    Perfect reflection 1 -
    下载: 导出CSV

    Table  2.   Simulated optical parameters of different packaging materials

    Material Refractive index Absorption index/(mm−1)
    Epoxy 2.605 0.0078
    PMMA 1.499 0
    Silica 1.41 0.01
    下载: 导出CSV

    Table  3.   Simulated optical parameters of light-emitting diodes with different sizes

    Material Thickness Refractive
    index
    Absorption index/
    (mm−1)
    Sapphire 30 µm 1.70 0.004
    ITO 300 nm 1.50 0
    p-GaN 150 nm 2.45 2.300
    Active layer (MQW) 100 nm 2.54 25
    n-GaN 6.75 µm 2.45 2.3
    下载: 导出CSV

    Table  4.   Far-field beam angle and output efficiency of 5050 SMT beads with Al bracket and PMMA packaging materials at different angles

    Width of
    square/mm
    Light-beam
    angle
    Light extraction
    efficiency
    Number of
    light beams
    5 70 0.288 2
    15 50 0.400 2
    25 70 0.489 2
    35 70 0.505 2
    45 160 0.508 1
    55 140 0.652 1
    65 120 0.654 1
    75 50 0.645 2
    85 30 0.454 2
    下载: 导出CSV

    Table  5.   Far-field beam angles and output efficiencies of 5050 SMT beads with different packaging heights and Al brackets and PMMA packaging material at an inclination of 85°

    Width of
    square/mm
    Light beam angle
    without reflection
    Light extraction
    efficiency
    Number of
    light beams
    0.01 160 0.369 1
    0.02 140 0.477 1
    0.04 140 0.570 1
    0.06 120 0.612 1
    0.08 120 0.638 1
    下载: 导出CSV

    Table  6.   Far-field beam angles and output efficiencies of 5050 SMT beads with different packaging materials, and a packaging height of 0.08 mm, Al brackets at an inclination of 85°

    Material Light beam angle without reflection Light extraction efficiency Number of light beams
    Cu 140 0.247 1
    Al 20 0.574 2
    Ag 20 0.615 2
    Ti 160 0.194 1
    Perfect absorption 120 0.175 1
    Perfect reflection 30 0.813 2
    下载: 导出CSV

    Table  7.   Far-field beam angles and output efficiencies of 5050 SMT beads with different materials, a packaging height of 0.08 mm, and a sapphire thickness of 0.05 mm packaged with silicone supports at an inclination of 85°

    Width of square/(mm) Light beam angle without reflection Light extraction efficiency Number of light beams
    Epoxy 30 0.511 2
    PMMA 30 0.555 2
    Silica 20 0.574 2
    下载: 导出CSV

    Table  8.   Beam angles and output efficiencies of 5050 SMT beads with different chip sizes and Al brackets and PMMA packaging materials at an inclination of 85°

    Cell size Light beam angle
    without reflection
    Light extraction
    efficiency
    Number of
    light beams
    30 30 0.521 2
    40 30 0.505 2
    50 30 0.490 2
    100 30 0.456 2
    下载: 导出CSV

    Table  9.   Beam angles and output efficiencies of 5050 SMT beads with a sapphire thickness of 30 μm, Al brackets, and PMMA packaging materials at an inclination angle of 85°

    Diameter of
    sapphire square
    structure
    Angle of light
    beam without
    reflection
    Light
    extraction
    efficiency
    Number of
    light beams
    2 30 0.555 2
    3 30 0.554 2
    4 30 0.553 2
    下载: 导出CSV

    Table  10.   Beam angles and output efficiencies of 5050 SMT beads with different sapphire thicknesses and Al brackets and PMMA packaging materials at an inclination angle of 85°

    Sapphire length Light beam angle without reflection Light extraction efficiency Number of light beams
    10 30 0.547 2
    30 30 0.553 2
    50 30 0.553 2
    下载: 导出CSV
  • [1] KIKUCHI S, SHIBATA Y, ISHINABE T, et al. Thin mini-LED backlight using reflective mirror dots with high luminance uniformity for mobile LCDs[J]. Optics Express, 29(17): 26724-26735.
    [2] GAO ZH W, NING H L, YAO R H, et al. Mini-LED backlight technology progress for liquid crystal display[J]. Crystals, 2022, 12(3): 313. doi: 10.3390/cryst12030313
    [3] YANG ZH Y, HSIANG E L, QIAN Y ZH, et al. Performance comparison between mini-LED backlit LCD and OLED display for 15.6-inch notebook computers[J]. Applied Sciences, 2022, 12(3): 1239. doi: 10.3390/app12031239
    [4] ZOU G W, WANG Z Y, LIU Y T, et al. Deep learning-enabled image content-adaptive field sequential color LCDs with mini-LED backlight[J]. Optics Express, 2022, 30(12): 21044-21064. doi: 10.1364/OE.459752
    [5] HSIANG E L, YANG ZH Y, YANG Q, et al. Prospects and challenges of mini-LED, OLED, and micro-LED displays[J]. Journal of the Society for Information Display, 2021, 29(6): 446-465. doi: 10.1002/jsid.1058
    [6] MILLER M E. LCD Display Technology[M]//MILLER M E. Color in Electronic Display Systems: Advantages of Multi-primary Displays. Cham: Springer, 2019: 87-105.
    [7] ZOU G W, WANG Z Y, YANG W CH, et al. 65‐1: Deep learning-enabled image content adaptive driving algorithm for field sequential color LCDs with mini-LED backlight[J]. SID Symposium Digest of Technical Papers, 2022, 53(1): 857-860. doi: 10.1002/sdtp.15628
    [8] HUANG Y G, TAN G J, GOU F W et al. Prospects and challenges of mini-LED and micro-LED displays[J]. Journal of the Society for Information Display, 2019, 27(7): 387-401. doi: 10.1002/jsid.760
    [9] LEE J G, KO J H. Optimization of the optical structure of thin direct-lit LED backlights for LCD applications by using micro-LEDs[J]. Journal of Information Display, 2020, 21(1): 65-70. doi: 10.1080/15980316.2019.1693436
    [10] SHEN B, ASPELL J, RINEHART T, et al. P‐206: Late-news-poster: lattice patterned micro lens array (MLA) optical films for mini-LED back light units (BLUs)[J]. SID Symposium Digest of Technical Papers, 2020, 51(1): 1649-1651. doi: 10.1002/sdtp.14211
    [11] HSIANG E L, LI Y N Q, HE Z Q, et al. Enhancing the efficiency of color conversion micro-LED display with a patterned cholesteric liquid crystal polymer film[J]. Nanomaterials, 2020, 10(12): 2430. doi: 10.3390/nano10122430
    [12] YU X J, XIANG L Y, ZHOU SH L, et al. Effect of refractive index of packaging materials on the light extraction efficiency of COB-LEDs with millilens array[J]. Applied Optics, 2021, 60(2): 306-311. doi: 10.1364/AO.410141
    [13] HUANG C G, HU M, ZHANG CH Y, et al. Narrow beam uniform illumination design of COB light source[J]. High Power Laser and Particle Beams, 2021, 33(2): 029002. (in Chinese).
    [14] HAO R, GE A, TAO X, et al. Optical design of a high-mast luminaire based on four COB LED light source modules[J]. Lighting Research & Technology, 2019, 51(3): 447-456.
    [15] QIU Y, CHEN H H, MENG W X. Channel modeling for visible light communications—a survey[J]. Wireless Communications and Mobile Computing, 2016, 16(14): 2016-2034. doi: 10.1002/wcm.2665
    [16] WANG K, CHEN F, LIU Z Y, et al. Design of compact freeform lens for application specific light-emitting diode packaging[J]. Optics Express, 2010, 18(2): 413-425. doi: 10.1364/OE.18.000413
    [17] KEMPER B, STÜRWALD S, REMMERSMANN C, et al. Characterisation of light emitting diodes (LEDs) for application in digital holographic microscopy for inspection of micro and nanostructured surfaces[J]. Optics and Lasers in Engineering, 2008, 46(7): 499-507. doi: 10.1016/j.optlaseng.2008.03.007
    [18] GFELLER F R, BAPST U. Wireless in-house data communication via diffuse infrared radiation[J]. Proceedings of the IEEE, 1979, 67(11): 1474-1486. doi: 10.1109/PROC.1979.11508
    [19] GALEOTTI F, MRÓZ W, SCAVIA G, et al. Microlens arrays for light extraction enhancement in organic light-emitting diodes: A facile approach[J]. Organic Electronics, 2013, 14(1): 212-218. doi: 10.1016/j.orgel.2012.10.034
    [20] CARRASCOSA M, CUSSO F, AGULLO-LOPEZ F. Lambert emitters: a simple Monte-Carlo approach to optical diffusers[J]. European Journal of Physics, 1985, 6(3): 183-187. doi: 10.1088/0143-0807/6/3/011
    [21] WEI W, CHEN Y Y, WANG C X, et al. Simulation of far-field light distribution of micro-LED based on its structural parameters[J]. Materials, 2022, 15(24): 8854. doi: 10.3390/ma15248854
    [22] FAN Z Y, LIN J Y, JIANG H X. III-nitride micro-emitter arrays: development and applications[J]. Journal of Physics D:Applied Physics, 2008, 41(9): 094001. doi: 10.1088/0022-3727/41/9/094001
    [23] PARK H J, CHA Y J, KWAK J S. Chip size-dependent light extraction efficiency for blue micro-LEDs[J]. Journal of the Korean Institute of Electrical and Electronic Material Engineers, 2019, 32(1): 47-52.
    [24] BAYNEVA I I. Calculation and construction of optical elements of light devices[J]. Dilemas Contemp Educ Política Valores, 2019, 6: 58.
    [25] GUO W, MENG H, CHEN Y R, et al. Wafer-level monolithic integration of vertical micro-LEDs on glass[J]. IEEE Photonics Technology Letters, 2020, 32(12): 673-676. doi: 10.1109/LPT.2020.2991672
    [26] LELIKOV Y S, BOCHKAREVA N I, GORBUNOV R I, et al. Measurement of the absorption coefficient for light laterally propagating in light-emitting diode structures with In0.2Ga0.8N/GaN quantum wells[J]. Semiconductors, 2008, 42(11): 1342-1345. doi: 10.1134/S1063782608110195
    [27] ZHAO G Y, ISHIKAWA H, JIANG H, et al. Optical absorption and photoluminescence studies of n-type GaN[J]. Japanese Journal of Applied Physics, 1999, 38(9A): L993-L995. doi: 10.1143/JJAP.38.L993
    [28] YANG D, THOMAS M E, TROPF W J. Infrared refractive index of sapphire as a function of temperature[J]. Proceedings of SPIE, 1999, 3705: 60-69. doi: 10.1117/12.354642
    [29] O’MAHONY D, HOSSAIN M N, JUSTICE J, et al. High index contrast optical platform using gallium phosphide on sapphire: an alternative to SOI?[J]. Proceedings of SPIE, 2012, 8431: 84311H. doi: 10.1117/12.922687
    [30] TRAN N T, SHI F G. LED package design for high optical efficiency and low viewing angle[C]. Proceedings of 2007 International Microsystems, Packaging, Assembly and Circuits Technology, IEEE, 2007: 10-13.
  • 加载中
图(10) / 表(10)
计量
  • 文章访问数:  162
  • HTML全文浏览量:  172
  • PDF下载量:  131
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-07
  • 修回日期:  2023-08-07
  • 网络出版日期:  2023-10-18

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!