留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Stimulated brillouin scattering in double-clad thulium-doped fiber amplifier

LIU Qing-min SUN Hui-jie HOU Shang-lin LEI Jing-li WU Gang YAN Zu-yong

刘庆敏, 孙慧杰, 侯尚林, 雷景丽, 武刚, 晏祖勇. 双包层掺铥光纤放大器中的受激布里渊散射[J]. 中国光学(中英文), 2024, 17(1): 226-237. doi: 10.37188/CO.EN-2023-0011
引用本文: 刘庆敏, 孙慧杰, 侯尚林, 雷景丽, 武刚, 晏祖勇. 双包层掺铥光纤放大器中的受激布里渊散射[J]. 中国光学(中英文), 2024, 17(1): 226-237. doi: 10.37188/CO.EN-2023-0011
LIU Qing-min, SUN Hui-jie, HOU Shang-lin, LEI Jing-li, WU Gang, YAN Zu-yong. Stimulated brillouin scattering in double-clad thulium-doped fiber amplifier[J]. Chinese Optics, 2024, 17(1): 226-237. doi: 10.37188/CO.EN-2023-0011
Citation: LIU Qing-min, SUN Hui-jie, HOU Shang-lin, LEI Jing-li, WU Gang, YAN Zu-yong. Stimulated brillouin scattering in double-clad thulium-doped fiber amplifier[J]. Chinese Optics, 2024, 17(1): 226-237. doi: 10.37188/CO.EN-2023-0011

双包层掺铥光纤放大器中的受激布里渊散射

详细信息
  • 中图分类号: O437.2

Stimulated brillouin scattering in double-clad thulium-doped fiber amplifier

doi: 10.37188/CO.EN-2023-0011
Funds: Supported by National Natural Science Foundation of China (No. 61665005); HongLiu First-class Disciplines Development Program of Lanzhou University of Technology
More Information
    Author Bio:

    LIU Qing-min (1993—), female, born in Fuyang, Anhui Province, China, received her M.S. degree from Lanzhou University of Technology in 2022. Her research area is primarily focused on fiber optic sensing. E-mail: Celina1026@163.com

    HOU Shang-lin (1970—), male, born in Qin’an, Gansu Province, Professor, received his PhD from Beijing University of Posts and Telecommunications in 2008. His research predominantly focuses on developing new optical fiber and high-speed optical communication devices, next-generation high-speed all-optical communication networks, and optical fiber sensor devices and networks. E-mail: houshanglin@vip.163.com

    Corresponding author: houshanglin@vip.163.com
  • 摘要:

    理论分析了波长为2 µm的掺铥光纤放大器中受激布里渊散射(SBS)对激光输出性能的影响,研究了双包层掺铥光纤在793 nm的泵浦波长和1.9~2.1 µm的激光工作波段的光模分布、有效折射率、有效模场面积和归一化频率,数值计算了在1.9~2.1µm的激光工作波段双包层掺铥光纤中的布里渊频移和布里渊增益谱等SBS特性。利用增益光纤中的受激布里渊散射理论模型,研究了受激布里渊散射对掺铥光纤放大器激光输出性能的影响。在DTDF-10/130双包层掺铥光纤中,使用功率为100 W、波长为793 nm的连续光作为泵浦,可对波长为2 μm、功率为0.01 W的连续信号光进行放大。当泵浦光功率填充因子为0.01、0.02和0.03时,信号光的最大输出功率分别为25.27 W、31.08 W和34.06 W。对应的最佳双包层光纤长度为2.66 m、2.02 m和1.75 m,由受激布里渊散射产生的斯托克斯光功率分别为1.68 W、1.39 W和1.14 W。结果表明,在掺铥光纤放大器中使用泵浦光功率填充因子大的双包层光纤可以降低光纤长度,从而减小受激布里渊散射对信号激光输出功率的影响。本文的数值模型可以对光纤放大器的光纤长度进行优化,对提高实验效率、降低实验成本具有重要价值。

     

  • Figure 1.  Structure and refractive index distribution of DTDF-10/130 double-clad thulium-doped fiber

    Figure 2.  Structure and refractive index distribution of DTDF-25/400 double-clad thulium-doped fiber

    Figure 3.  Schematic diagrams of the (a) two-dimensional and (b) three-dimensional optical field distributions of the LP01 mode of the DTDF-10/130 double-clad thulium-doped fiber at 2 μm wavelength, respectively

    Figure 4.  Optical field distribution of DTDF-25/400 double-clad thulium-doped fiber at 2 µm wavelength. (a)−(c) Schematic diagrams of the two-dimensional optical field distributions for LP01, LP11 (o) and LP11 (e); (d)−(f) schematic diagrams of three-dimensional optical field distributions for LP01, LP11 (o) and LP11 (e)

    Figure 5.  Schematic diagram of the normalized frequency with signal wave wavelength for DTDF-10/130 and DTDF-25/400 double-clad thulium-doped fibers

    Figure 6.  Effective refractive index and effective mode field area of different optical wave modes in two fibers in the 1.9~2.1 µm band. (a) LP01 mode in DTDF-10/130 double-clad thulium-doped fiber; (b) LP01 and LP11 modes in DTDF-25/400 double-clad thulium-doped fiber

    Figure 7.  Variation of power filling factor with wavelength in double-clad thulium-doped fibers DTDF-10/130 and DTDF-25/400

    Figure 8.  Optical wave modes of 793 nm pump wave in different fibers. (a)-(d) DTDF-10/130; (e)-(h) DTDF-25/400 double-clad thulium-doped fiber

    Figure 9.  Optical modes corresponding to small power filling factor in the inner cladding at a wavelength of 793 nm for the pump wave

    Figure 10.  Schematic diagram of intra- and inter-mode Brillouin scattering of different optical wave modes in two fibers operating at 1.9~2.1 µm laser wavelengths

    Figure 11.  LP01-LP01 intra-mode Brillouin gain coefficient in DTDF-10/130 double-clad thulium-doped fiber, LP01-LP01 intra-mode, LP11-LP11 intra-mode and LP01-LP11 inter-mode Brillouin gain coefficients in DTDF-25/400 double-clad thulium-doped fiber at the 1.9~2.1 µm laser waveband

    Figure 12.  Brillouin gain spectra at laser wavelength of 2 µm. (a) Brillouin scattering within LP01-LP01 mode in DTDF-10/130 double-clad thulium-doped fiber; (b) Brillouin scattering within LP01-LP01 mode, LP11-LP11 mode and LP01-LP11 inter-mode in DTDF-25/400 double-clad thulium-doped fiber

    Figure 13.  Distribution of pump wave power, signal wave power and Stokes wave power along the fiber

    Figure 14.  Residual pumping optical powers varying with fiber length at different pump optical power filling factors

    Figure 15.  Variation of laser output power and Stokes optical power with fiber length when pump power filling factors are (a) 0.01, (b) 0.02, and (c) 0.03, respectively

    Table  1.   Geometry and optical properties of double-clad thulium-doped fibers

    PropertiesUnitDTDF-10/130DTDF-25/400
    Core diameterµm10.0 ± 1.025.0 ± 2.5
    Diameter of inner claddingµm130.0 ± 3.0400.0 ± 15.0
    Concentricity error of core/internal claddingµm≤ 2.0≤ 4.0
    Diameter of coating layerµm215.0 ± 10.0550.0 ± 20
    Operating wavelengthnm1900 ~ 21001900 ~ 2100
    Core numerical aperture——0.150 ± 0.0100.090 ± 0.010
    Numerical aperture of inner cladding——≥ 0.460≥ 0.460
    下载: 导出CSV

    Table  2.   Simulation parameters of thulium-doped fiber amplifier

    Parameter Symbol Value Unit
    Fiber core diameter a 10.0 µm
    Inner cladding diameter b 130.0 µm
    Tm3+ doping concentration N0 5.5×1025 m−3
    Pump wavelength λp 793 nm
    Signal wave wavelength λs 2 µm
    Pump wave absorption cross section σa(λp) 8.5×10−25 m2
    Pump wave emission cross section σe(λp) 8.9×10−25 m2
    Signal wave absorption cross section σa(λs) 0.1×10−25 m2
    Signal wave emission cross section σe(λs) 6.2×10−25 m2
    Stimulated Brillouin scattering gain gB 2.803×10−11 m/W
    Brillouin noise ISBS 3.350×10−7 W
    Pumped optical fiber loss αp 1.2×10−2 m−1
    Signal optical fiber loss αs 2.3×10−3 m−1
    Pump optical power filling factor Γp Influenced by the shape of the inner cladding -
    Signal optical power filling factor Γs 0.817 -
    下载: 导出CSV
  • [1] YAO J Q, REN G J, ZHANG Q, et al. Ytterbium-doped double clad fiber laser and pump coupling technology[J]. Laser Journal, 2006, 27(5): 1-4. (in Chinese).
    [2] LIU W W, SONG F, LI J, et al. Cladding pumping upconversion fiber laser[J]. Laser Journal, 2000, 21(1): 10-12. (in Chinese). doi: 10.3969/j.issn.0253-2743.2000.01.001
    [3] LIU Q, YANG SH P, LEI J. Cladding pump fiber lasers and its application[J]. Optical Communication Technology, 2005, 29(6): 54-56. (in Chinese).
    [4] SNITZER E, PO H, HAKIMI F, et al. Double clad, offset core Nd fiber laser[C]. Optical Fiber Sensors 1988, Optica Publishing Group, 1988.
    [5] ZHANG H R, ZHANG J J, SUN SH ZH, et al. Self-mode-locking and self-phase modulation in Tm3+-doped double clad fiber laser for pulse peak power enhancement and multi-wavelength generation[J]. Optics & Laser Technology, 2021, 141: 107128.
    [6] DURÁN-SÁNCHEZ M, POSADA-RAMÍREZ B, ÁLVAREZ-TAMAYO R I, et al. Low repetition rate gain-switched double-clad thulium-doped fiber laser operating in the 2µm wavelength region[J]. Optical Fiber Technology, 2021, 66: 102660. doi: 10.1016/j.yofte.2021.102660
    [7] SHEN Y H, WU B, HU CH ZH, et al. Experimental investigation on the high average power ns mid-infrared laser output at 3.8μm through difference frequency generation[J]. Chinese Journal of Lasers, 2022, 49(1): 0101017. (in Chinese).
    [8] ZHONG P L, WANG L, YANG B L, et al. 2 × 2kW near-single-mode bidirectional high-power output from a single-cavity monolithic fiber laser[J]. Optics Letters, 2022, 47(11): 2806-2809. doi: 10.1364/OL.458581
    [9] HUANG ZH M, SHU Q, TAO R M, et al. >5kW record high power narrow linewidth laser from traditional step-index monolithic fiber amplifier[J]. IEEE Photonics Technology Letters, 2021, 33(21): 1181-1184. doi: 10.1109/LPT.2021.3112270
    [10] XU Y, SHENG Q, WANG P, et al. 1. 5-kW all-fiberized Yb-doped MOPA laser at 1105nm with near-diffraction-limited beam quality and narrow spectral width[J]. Optics Communications, 2022, 511: 127893.
    [11] ZHANG A J, DUAN J L, XING Y B, et al. Application of thulium-doped laser in the biomedicine field[J]. Laser & Optoelectronics Progress, 2022, 59(1): 0100004. (in Chinese).
    [12] CHEN Y L, ZHU X L, ZHANG J X, et al. Development of pulsed single-frequency 2μm all-solid-state laser[J]. Laser & Optoelectronics Progress, 2020, 57(5): 050006. (in Chinese).
    [13] SINGH U N, KAVAYA M, KOCH G, et al. Solid-state 2-micron laser transmitter advancement for wind and carbon dioxide measurements from ground, airborne, and space-based lidar systems[J]. Proceedings of SPIE, 2008, 7111: 711104. doi: 10.1117/12.802740
    [14] SINGH U N, WALSH B M, YU J R, et al. Twenty years of Tm: Ho: YLF and LuLiF laser development for global wind and carbon dioxide active remote sensing[J]. Optical Materials Express, 2015, 5(4): 827-837. doi: 10.1364/OME.5.000827
    [15] WULFMEYER V, RANDALL M, BREWER A, et al. 2-μm Doppler lidar transmitter with high frequency stability and low chirp[J]. Optics Letters, 2000, 25(17): 1228-1230. doi: 10.1364/OL.25.001228
    [16] ISHII S, MIZUTANI K, IWAI H, et al. 2-µm coherent lidar technology developed at NICT: past, current, and future[C]. Applications of Lasers for Sensing and Free Space Communications 2015, Optica Publishing Group, 2015.
    [17] WANG X F, WANG J, DUAN X Y. Experimental investigation on evolution of a split multi-wavelength bright-dark pulse in a mode-locked thulium-doped fiber laser[J]. Optoelectronics Letters, 2022, 18(12): 717-722. doi: 10.1007/s11801-022-2089-3
    [18] SONG W H, PENG ZH G, HOU Y B, et al. High-power wavelength-tunable ultrashort pulse firer laser at 2 μm[J]. High Power Laser and Particle Beams, 2022, 34(3): 031002. (in Chinese).
    [19] YING G, FENG P Y, TING F, et al. Wavelength-interval-switchable multi-wavelength thulium-doped fiber laser with a nonlinear dual-pass Mach-Zehnder interferometer filter in 2-µm-band[J]. Optics & Laser Technology, 2022, 145: 107470.
    [20] GUAN B, YAN F P, YANG D D, et al. Sub-kHz narrow-linewidth single-longitudinal-mode thulium-doped fiber laser utilizing triple-coupler ring-based compound-cavity filter[J]. Photonics, 2023, 10(2): 209. doi: 10.3390/photonics10020209
    [21] YANG B L, YAGN H, YE Y, et al. 6 kW broadband fiber laser based on home-made ytterbium-doped fiber with gradually varying spindle-shape structure[J]. High Power Laser and Particle Beams, 2022, 34(8): 081001. (in Chinese).
    [22] LIU CH, LIU J, ZHANG Y J, et al. Stimulated Brillouin scattering suppression of thulium-doped fiber amplifier with fiber superfluorescent seed source[J]. Optics Express, 2017, 25(9): 9569-9578. doi: 10.1364/OE.25.009569
    [23] KOVALEV V I, HARRISON R G, NILSSON J, et al. Analytic modeling of Brillouin gain in rare-earth doped fiber amplifiers with high-power single-frequency signals[J]. Proceedings of SPIE, 2005, 5709: 142-146. doi: 10.1117/12.591913
    [24] YANG L, ZHENG J J, HAO L Y, et al. Influence of signal spectral width characteristic on SBS threshold of single frequency fiber amplifier[J]. Chinese Journal of Lasers, 2017, 44(9): 0901009. (in Chinese). doi: 10.3788/CJL201744.0901009
    [25] LIU Y K, WANG X L, SU R T, et al. Effect of phase modulation on linewidth and stimulated Brillouin scattering threshold of narrow-linewidth fiber amplifiers[J]. Acta Physica Sinica, 2017, 66(23): 234203. (in Chinese). doi: 10.7498/aps.66.234203
    [26] HARISH A V, NILSSON J. Suppression of stimulated Brillouin scattering in pulsed erbium-doped fiber amplifier through intensity-modulated counter pumping[J]. Optical Engineering, 2019, 58(10): 102703.
    [27] HUANG B, WANG J Q, SHAO X P. Fiber-based techniques to suppress stimulated brillouin scattering[J]. Photonics, 2023, 10(3): 282. doi: 10.3390/photonics10030282
    [28] TIAN H, SHI CH D, FU SH J, et al. 0.59-mJ single-frequency Yb-3+-doped hundred-nanosecond pulsed all-fiber laser[J]. Chinese Journal of Lasers, 2022, 49(13): 1301005. (in Chinese). doi: 10.3788/CJL202249.1301005
    [29] 全国通信标准化技术委员会. GB/T 28504.2-2021 掺稀土光纤 第2部分: 双包层掺铥光纤特性[S]. 北京: 中国标准出版社, 2021.

    National Communications Standardization Technical Committee. GB/T 28504.2-2021 Rare earth doped optical fibre—Part 2: Characteristics of double-cladding thulium-doped optical fibre[S]. Beijing: Standards Press of China, 2021. (in Chinese).
    [30] LIU Q M, CHEN J P, HOU SH L, et al. Investigation into micro-polishing photonic crystal fibers for surface plasmon resonance sensing[J]. Crystals, 2022, 12(8): 1106. doi: 10.3390/cryst12081106
    [31] GILES C R, DESURVIRE E. Modeling erbium-doped fiber amplifiers[J]. Journal of Lightwave Technology, 1991, 9(2): 271-283. doi: 10.1109/50.65886
    [32] HUANG L J, YAO T F, YANG B H, et al. Modified single trench fiber with effective single-mode operation for high-power application[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(3): 0901409.
    [33] JACKSON S D, KING T A. Theoretical modeling of Tm-doped silica fiber lasers[J]. Journal of Lightwave Technology, 1999, 17(5): 948-956. doi: 10.1109/50.762916
    [34] SHEN X, ZHOU J H, YANG G L, et al. Temperature characteristics analysis of a Tm3+-doped heterogeneous helical cladding fiber amplifier[J]. Applied Physics B, 2022, 128(12): 221. doi: 10.1007/s00340-022-07936-2
    [35] FANG Q, SHI W, KIEU K, et al. High power and high energy monolithic single frequency 2 µm nanosecond pulsed fiber laser by using large core Tm3+-doped germanate fibers: experiment and modeling[J]. Optics Express, 2012, 20(15): 16410-16420. doi: 10.1364/OE.20.016410
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  158
  • HTML全文浏览量:  77
  • PDF下载量:  139
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-16
  • 修回日期:  2023-05-29
  • 网络出版日期:  2023-09-22

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!