Design of an optical system for airborne common-aperture multispectral targeting pod
-
摘要:
采用折叠离轴三反望远镜作为共光路组件,设计了一种适合于新型机载多光谱共口径瞄准吊舱的光学系统。该光学系统具有小型化、高透过率、多光谱、长焦距、装调难度低等特点。所设计的多光谱共口径光学系统,光学有效口径为220 mm、近红外焦距为
1100 mm、短波红外焦距为1200 mm、中波红外焦距为880 mm,并可作为收发一体天线集成有激光测照器,与其它成像传感器共口径、共快反镜,装载于Ф500 mm系列典型机载球形光电吊舱平台。光学设计分析与结果表明,光学设计像质达到了衍射极限,各项指标参数均满足技术要求。-
关键词:
- 多光谱瞄准吊舱 /
- 多光谱共口径光学系统 /
- 无焦离轴三反 /
- 会聚透镜组 /
- 光学设计
Abstract:A folding off-axis three mirror telescope has been used as the common optical path component in the design of an optical system suitable for a new airborne multispectral common aperture targeting pod. The optical system is characterized by miniaturization, high transmittance, multispectral, long focal length, and low difficulty of installation and adjustment. The designed multispectral common aperture optical system has an effective optical aperture of 220 mm, a near-infrared focal length of
1100 mm, a short-wave infrared focal length of1200 mm, and a medium-wave infrared focal length of 880 mm. It can be integrated as a transmitting and receiving antenna with a laser sensor, which shares the same aperture and fast steering mirror with other imaging sensors. The system is mounted on a typical airborne spherical electro-optical pod platform with a diameter of 500 mm. The optical design analysis and results indicate that the image quality of the optical design has reached the diffraction limit. All indicators and parameters meet the technical requirements. -
图 3 系统组成:1-离轴主镜,2-离轴次镜,3-离轴三镜,4-折转反射镜,5-快反镜,6-第一分光镜,7-近红外/短波红外调焦镜,8-第二分光镜,9-会聚近红外组件,10-近红外焦平面,11-第三分光镜,12-会聚短波红外组件,13-短波红外焦平面,14-激光测照器,15-会聚中波红外组件,16-中波红外调焦镜,17-中波红外焦平面
Figure 3. System composition: 1- off-axis primary mirror, 2- off-axis secondary mirror, 3- off-axis tertiary mirror, 4- folding mirror, 5- fast steering mirror, 6- first beam splitter, 7- visible/swir focusing lens, 8- second beam splitter, 9- convergent visible lens group, 10- visible focal plane, 11- third beam splitter, 12- convergent SWIR lens group, 13- SWIR focal plane, 14- laser designator, 15- convergent MWIR lens group, 16- MWIR focusing lens, 17- MWIR focal plane
表 1 光学设计要求
Table 1. Specifications of optical design
通道 指标 参数 系统要求 外包络尺寸 ≤Ф500 mm 近红外 谱段 0.6~0.9 μm 探测器分辨率 5120 ×4096 探测器像元尺寸 4.5 μm 焦距 1100 mmF# 5.0 传函 >0.2@110 lp/mm 视场角 1.2°×0.96° 畸变 <0.5% 短波红外 谱段 1.0~1.7 μm 探测器分辨率 1280 ×1024 探测器像元尺寸 15 μm 焦距 1200 mmF# 5.5 传函 >0.4@33 lp/mm 视场角 0.92°×0.73° 畸变 <0.5% 中波红外 谱段 3.4~4.2 μm 探测器分辨率 1280 ×1024 探测器像元尺寸 15 μm 焦距 880 mm F# 4.0 传函 >0.2@33 lp/mm 视场角 1.25°×1.0° 畸变 <0.5% 激光测照 谱段 1.064 μm 束散角 <0.05 mrad 表 2 公差分析结果
Table 2. Tolerance analysis result
公差类型 公差容限 表面公差 光圈 1 厚度 0.02 偏心 0.01 倾斜 15″ 元件公差 偏心 0.01 倾斜 15″ 折射率 0.0002 -
[1] 霍永清, 张国伟, 姜伟兵. 智能弹药发展趋势分析[J]. 兵器装备工程学报,2022,43(9):136-143.HUO Y Q, ZHANG G W, JIANG W B. Development trend analysis of intelligent ammunition[J]. Journal of Ordnance Equipment Engineering, 2022, 43(9): 136-143. (in Chinese). [2] 沈君辉, 杨光, 陶忠, 等. 舰载直升机光电系统发展及其关键技术[J]. 应用光学,2015,36(2):161-170. doi: 10.5768/JAO201536.0201001SHEN J H, YANG G, TAO ZH, et al. Status and emphases of development for shipborne helicopter optoelectronic system[J]. Journal of Applied Optics, 2015, 36(2): 161-170. (in Chinese). doi: 10.5768/JAO201536.0201001 [3] 吴正容, 白广周. 美国弹道导弹预警探测识别技术发展分析[J]. 飞行器测控学报,2016,35(6):415-421.WU ZH R, BAI G ZH. Analysis of US ballistic missile warning and recognition technology development[J]. Journal of Spacecraft TT & C Technology, 2016, 35(6): 415-421. (in Chinese). [4] 朱卓, 李季波, 马承启. 机载红外夜视技术及其发展趋势[J]. 真空电子技术, 2023, 25(6): 90-95. (查阅网上资料, 未找到卷号信息, 请确认) .ZHU Z, LI J B, MA C Q. Airborne infrared night vision technology and its development trends[J]. Vacuum Electronics, 2023, 25(6): 90-95. (in Chinese). [5] 鲜勇, 李文强, 赵翔. 一种机载多波段共光路望远光学系统[J]. 电光与控制,2020,27(8):109-112.XIAN Y, LI W Q, ZHAO X. Design of an airborne telescope optical system with multispectrum and common aperture[J]. Electronics Optics & Control, 2020, 27(8): 109-112. (in Chinese). [6] 杨晓强, 陶忠, 刘莹奇. 中小型共光路系统支撑结构设计和分析[J]. 应用光学,2023,44(5):998-1009. doi: 10.5768/JAO202344.0501008YANG X Q, TAO ZH, LIU Y Q. Design and analysis of support structure of small and medium-sized common optical path system[J]. Journal of Applied Optics, 2023, 44(5): 998-1009. (in Chinese). doi: 10.5768/JAO202344.0501008 [7] 韩培仙, 任戈, 刘永, 等. 可见/中波双波段共口径光学系统设计[J]. 应用光学,2020,41(3):435-440. doi: 10.5768/JAO202041.0301001HAN P X, REN G, LIU Y, et al. Optical design of VIS/MWIR dual-band common-aperture system[J]. Journal of Applied Optics, 2020, 41(3): 435-440. (in Chinese). doi: 10.5768/JAO202041.0301001 [8] 周晓斌, 孙浩, 原琦, 等. 一种折反式红外/激光复合导引头光学系统设计[J]. 应用光学,2019,40(6):987-992. doi: 10.5768/JAO201940.0601009ZHOU X B, SUN H, YUAN Q, et al. Design of catadioptric infrared/laser compound seeker optical system[J]. Journal of Applied Optics, 2019, 40(6): 987-992. (in Chinese). doi: 10.5768/JAO201940.0601009 [9] 陆红强, 张璟玥, 刘超, 等. 内埋式光电搜索瞄准指示系统的广域扫描控制技术[J]. 应用光学,2023,44(1):1-5. doi: 10.5768/JAO202344.0101001LU H Q, ZHANG J Y, LIU CH, et al. Wide-area scanning control technology of embedded photoelectric search aiming and indication system[J]. Journal of Applied Optics, 2023, 44(1): 1-5. (in Chinese). doi: 10.5768/JAO202344.0101001 [10] SAGEM. EUROFLIR 410 mm Gyrostabilized Optronic Payload[M]. France: Sagemcom, 2009. [11] Raytheon. AN/AAS-52 Multi-Spectral Targeting System[M]. US: Raytheon, 2005. (查阅网上资料, 未能确认本条文献修改是否正确, 请确认)(查阅网上资料, 未找到出版地信息, 请确认) . [12] 吉书鹏. 机载光电载荷装备发展与关键技术[J]. 航空兵器, 2017, 41(6): 3-12. (查阅网上资料, 未找到卷号信息, 请确认) .JI SH P. Equipment development of airborne electro-optic payload and its key technologies[J]. Aero Weaponry, 2017, 41(6): 3-12. (in Chinese). [13] 黄中华, 冯彦辉, 刘于. 国外机载光电瞄准设备发展[J]. 电光与控制,2021,28(10):61-66. doi: 10.3969/j.issn.1671-637X.2021.10.013HUANG ZH H, FENG Y H, LIU Y. Development of airborne electro-optical targeting systems abroad[J]. Electronics Optics & Control, 2021, 28(10): 61-66. (in Chinese). doi: 10.3969/j.issn.1671-637X.2021.10.013 [14] 杨彦杰. 军用光电探测装备发展研究[J]. 红外,2017,38(9):8-13.YANG Y J. Research on development of military electro-optical detection equipment[J]. Infrared, 2017, 38(9): 8-13. (in Chinese). [15] 周峰, 刘建辉, 郭俊, 等. 国外机载红外预警系统发展动态分析[J]. 激光与红外,2017,47(4):399-403.ZHOU F, LIU J H, GUO J, et al. Development analysis of foreign airborne infrared early warning system[J]. Laser & Infrared, 2017, 47(4): 399-403. (in Chinese). [16] 刘莹奇, 陆红强, 李炜芃, 等. 某型机载反射式光学成像系统失调空中校正方法[J]. 应用光学,2023,44(4):763-767. doi: 10.5768/JAO202344.0401009LIU Y Q, LU H Q, LI W P, et al. Misalignment correction method of an airborne reflective imaging system in the sky[J]. Journal of Applied Optics, 2023, 44(4): 763-767. (in Chinese). doi: 10.5768/JAO202344.0401009 -